Hypothesizing
(Fantasizing)
Autonomous Hardware Design

Zhiru Zhang

Cornell University

Al4FACD Workshop @ ISCA
6/21/2025

PSS, N
y %?/ f@%\ -
(9 = . .
Il (==)i} Cornell University ‘ S I.E
@@DE@ S W@ / "

The Powerful Reasoning LLM

4 A
{ Training prompt Agent
Data) LLM
) G
aCtion reward
(prompt
completions)

Verifiable 1 if correct
) R =_[
Reward

0 otherwise

Performs well on many math and coding tasks, where

* Problems are verifiable

 LLM+RL navigates large search space by balancing exploration of
new solutions and exploitation of proven approaches from pretraining

Replicating the Same Approach for Hardware Design?

Feedback
(compiles? functional? performant?)

Prompt New Design | Crlten\Optimized R
(HDL/HLS) Met Design rTT1

Compiler OS.LLI P
Agent (CAD Tool) :7'; BE

Any showstoppers to this approach?

Learning the Bitter Lesson by Rich Sutton [1]

Most significant progress in Al has come from scaling — More compute, data,
and general meta-methods beat specialized, human-designed strategies in the long run

Feedback
(compiles? functional? performant?) TIT
No Liil
New Design , Criteri\@ptimized X m s
(HDL/HLS) Met Design B m

=

Bottleneck: Current HW compilation stack doesn’t
scale and relies heavily on handcrafted heuristics ®

[1] http://incompleteideas.net/Incldeas/BitterLesson.html (March 2019)

http://incompleteideas.net/IncIdeas/BitterLesson.html

Active Research: Neural Approximations of the Compiler

measured performance (ground truth for training)

tool configuration,
f% pragma settings, ...

Design space exploration
(or autotuning)

A

R

Compiler
(CAD tool)

/

Proxy model for
performance
¢+ prediction

estimated performance (prediction during inference)

« Data hungry — extensive (in distribution) training required
« Compiler remains a black box and a bottleneck for training runs

@
<N | compil ling | ML Model
es ompiler | calling ode

Research Question 1
Instead of just compilers calling ML and vice versa,
can we push toward a deeper, more unified integration?

Deep-rooted Problems in Compiler/Synthesis Tools

Typical Flow of Software Compiler Optimization
LLVM Canonicalization R TPPR Simple Loop Opts Target Specialization | | LVM
IR Mem2Reg, InstCombine, ?é?ég;g;?ggg;?ntlﬁn Loop Rotate, Loop Unswitch, Loop Vectorization, Loop IR
CFGSimplify ’ pity Loop Delete, Loop Unroll Distribution, SLP Vectorization
Typical Flow of Hardware Synthesis Optimization

Parsing/Translation Datapath Optimization Logic Synthesis Technology Mapping _
HDL Datapath extraction, Strength reduction, CSE, Decomposition, Restructuring, Cut enumeration, Netlist
FSM encoding Bitwidth optimization Rewrite, Refactoring, Balance Decomposition, Covering

> Most compiler/synthesis optimizations rely on ad hoc local heuristics, are
hard to parallelize, and typically run on CPUs using few threads

> The granularity and order of these optimizations are manually preset, known
as the phase ordering problem
-~ The “optimal” sequence may differ across input problems and hardware targets

A Radical Ground-up Approach?

Transformation
Space

Compiler / Synthesis
Optimization

Search
Method

Objective
Function

Phase ordered
transforms (mostly local)

<

Formal, compact encoding
of equivalent transforms

Current
Approach

<

Differentiable
Approach?

Heuristics running on
CPUs (mostly 1 thread)

Parallelized global

Gradient Descent

Hand-crafted cost models
(mostly linear costs)

\Yg

Realistic, non-linear
cost models

<

optimalization

Global
minimum

Learnable Cost

E-Graph as a Meta IR Given

e-graph is a data structure that efficiently > An |np.ut program:a +b X 2
represents equivalent programs using e-nodes > Arewriterule:t X2 -t <« 1

(expressions) and e-classes (sets of equivalent N L
e-nodes)

4

Equality saturation expands e-graph until no
more rewrites apply, enabling optimal
expression extraction with given costs

4 E-class is a set of e-nodes,
e-araph Apply containing equivalent expressions
g p Rewrites ec ::= {nq,ny, ... }
_ (until fixed point) E-node is an expression (or function) that /
depends on a list of child e-classes

n:= f(ecl, ecy,)

[1] Greg Nelson, Techniques for Program Verification, 1980.
[2] Ross Tate et al., Equality Saturation: A New Approach to Optimization, POPL 2009.

Broad Applications of E-Graphs

(a+b) K c (ae)+ (b c)

a + (b > c) ((a < c) L b) > e for (=0; ia; 1r+) . Extraction for [gor (1-0; s; 41

(axb) < c (a < c)xb D | D e graph | B

e?(axb): (cxd) (e?a: c) x (e?b: d) T S i ey

6?(@ + b) . C $ (e?a : C) + (€7b : O) / w ¥ Loop fusion

e?a: (b+c) (e?a: b) + (e?1: c) o A | ware synthesis

6?(& X b) ‘c (e?a : C) X (e‘?b : 1) 9 (£ (x[(<<1)4i1)) ; g(£(x(3%11))
IMpress: large multiplication [FCCM’22] Rover: RTL optimization [TCAD’24] SEER: high-level synthesis [ASPLOS™24]

N\

[VecAdd] [VecMAC]E

Ax(B+C)=AxB+ AxC
2i(A+B)=2,A+>,B

Ifi¢g A Ax) B=> .(AxB) (elserename i)
Zi ZjA: Zi,jA

If i ¢ Attr(A),then), A = A x dim(i)

A+ (B+C)=+(A,B,C) (assoc. & comm.)

Ax(BxC)==x(A,B,C) (assoc. & comm.) A A
SPORES: linear algebra Diospyros: DSP compilation [ASPLOS21] TENSAT: tensor graph
optimization for ML [VLDB’20] optimization [MLSys’21]

Many Others ...

A Radical Ground-up Approach?

Compiler / Synthesis
Optimization

Transformation
Space

Search
Method

Objective
Function

Current
Approach

<

Differentiable
Approach?

Phase ordered
transforms (mostly local)

<

Formal, compact encoding
of equivalent transforms

Heuristics running on
CPUs (mostly 1 thread)

<

Parallelized global
optimalization

() Global
minimum

Gradient Descent

Hand-crafted cost models
(mostly linear costs)

\Yg

Realistic, non-linear
cost models

Learnable Cost

10

The E-Graph Extraction Problem

extraction

—>

E-node n; with
cost u;is selected

Goal: Extract the lowest-cost legal subgraph based on a given cost function

Constraints: ®¢ Root e-class (ny) must be selected
e Exactly one e-node per chosen e-class must be selected

e All child e-classes of a chosen e-node must be selected
e No cycles after extraction

NP-hard in general, even on acyclic e-graphs

11

Existing Extraction Methods

e A popular heuristic

o A fast, iterative (greedy-ish) algorithm that selects e-nodes with min costs
o Only supports linear cost functions (i.e., weighted sum of individual node costs)
o Suboptimal

:: n4 greedily picked
! :

Heuristic extraction cost: 2 +4 + 4 =10 Optimal extraction cost:2+2+2 +3=9

12

Our Approach: SmoothE

> A fully differentiable approach to
e-graph extraction

> Continuous global optimization
that supports (learnable)
nonlinear cost

» GPU-accelerated and compatible
with modern ML frameworks

ASPLOS’25 Best Paper Award

N\
%
%

2\ Vi3

SmoothE: Differentiable E-Graph Extraction

Yaohui Cai
yc2632@cornell.edu
Cornell University
Ithaca, New York, USA

Cunxi Yu
cunxiyu@umd.edu
University of Maryland, College Park
College Park, Maryland, USA

Abstract

E-graphs have gained increasing popularity in compiler op-
timization, program synthesis, and theorem proving tasks.
They enable compact representation of many equivalent ex-
pressions and facilitate transformations via rewrite rules
without phase ordering limitations. A major benefit of using
e-graphs is the ability to explore a large space of equiva-
lent expressions, allowing the extraction of an expression
that best meets certain optimization objectives (or cost mod-
els). However, current e-graph extraction methods often face
unfavorable scalability-quality trade-offs and only support
simple linear cost functions, limiting their applicability to
more realistic optimization problems.

In this work, we propose SmoothE, a differentiable e-graph
extraction algorithm designed to handle complex cost mod-
els and optimized for GPU acceleration. More specifically, we
approach the e-graph extraction problem from a probabilis-
tic perspective, where the original discrete optimization is
relaxed to a continuous differentiable form. This formulation
supports any differentiable cost functions and enables effi-
cient searching for solutions using gradient descent. We im-
plement SmoothE in PyTorch to leverage the advancements
of the modern machine learning ecosystem. Additionally, we
introduce performance optimization techniques to exploit
sparsity and data parallelism. We evaluate SmoothE on a
variety of realistic e-graphs from five different applications
using three distinct cost models, including both linear and
non-linear ones. Our experiments demonstrate that SmoothE
consistently achieves a favorable trade-off between scalabil-
ity and solution quality.

Kaixin Yang
ky427@cornell.edu
Cornell University

Ithaca, New York, USA

Chenhui Deng
cd574@cornell.edu
Cornell University

Ithaca, New York, USA

Zhiru Zhang
zhiruz@cornell.edu
Cornell University

Ithaca, New York, USA

CCS Concepts: » Computing methodologies — Machine
learning; - Software and its engineering — Compilers;
General programming languages.

Keywords: Machine learning for systems; Compilers; Pro-
gramming languages; Equivalence graph

ACM Reference Format:

Yaohui Cai, Kaixin Yang, Chenhui Deng, Cunxi Yu, and Zhiru Zhang.
2025. SmoothE: Differentiable E-Graph Extraction. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3669940.3707262

1 Introduction
Term rewriting [17], widely employed in compiler optimiza-
tions [8, 34, 44] and theorem proving [15, 18], transforms pro-
grams into functionally equivalent but more efficient forms.
Traditional methods apply the rewrites sequentially in a
predetermined order, significantly affecting performance—a
challenge known as the phase ordering problem [44, 50].
Equality saturation addresses the phase ordering issue
by using the equivalence graph (e-graph), a data structure
that compactly represents a set of expressions (i.e., e-nodes)
and their equivalence relations (i.e., e-classes) [6, 33]. The
rewrite rules are applied collectively, encoding all function-
ally equivalent solutions on a single e-graph. This enables
the selection of the most cost-efficient (or performant) one

13

SmoothE in a Nutshell: Differentiable E-Graph Extraction

SmoothE i B
(in PyTorch) E> '_)\ __. |:> E

X Sampling

T~o (
-] \\\ l: pi= P(n;is selected) € [0, 1]
\\ \ —_—
R R|cru

/ininimize‘9 cost(p) + A Tr(eA) nomaon | | Fobely | | sofic | Differentiabl

Propagation Regularization Formulation

Where Cp SOftmaX(Q) AcycI|C|ty penalty
Vectorizati Operati Performance
p LBP(cp) learnable params &S%rlazrgitgn Optlpr:irzaaltci):ns pesd Baxing Optimization

\

Loopy belief propagation (LBP) for ' lneara

e || | Supported
. Quadratic
completeness constraints \

Cost Models

14

Some SmoothE Results on a Logic Synthesis Task

Extraction Cost
Improvement
Benchmarks _ .

Baseline* ILP SmoothE | over baseline
Adder 313 255 265 15.3%
Barrel Shifter 1395 12017 1238 11.3%
Divisor 31308 27280° 24260 22.5%
Log2 14078 13098° 9881 29.8%
Multiplier 9911 11645 7197 27 .4%
Sine 2417 1913° 1841 23.8%
Square-Root 11752 12592° 7140 39.2%

+: a popular iterative heuristic method for e-graph extraction
* ILP timed out after 6 hours

A Radical Ground-up Approach?

Transformation
Space

Compiler / Synthesis
Optimization

Search
Method

Objective
Function

Phase ordered
transforms (mostly local)

<

Formal, compact encoding
of equivalent transforms

Current
Approach

<

Differentiable
Approach?

Heuristics running on
CPUs (mostly 1 thread)

Parallelized global

Gradient Descent

Hand-crafted cost models
(mostly linear costs)

\Yg

Realistic, non-linear
cost models

<

optimalization

Global
minimum

Learnable Cost

16

Learnable Cost Models using GNNs

QoR

Publication BLOG »

2023: A year of groundbreaking advances in Al and
computing

Estimation

Post-HLS
Resource &
Latency

Post-HLS

%00 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

3 Google

GNN4HLS

[Ferretti et al.
TODAES’22]

GNN-DSE

FRIDAY, DECEMBER 22, 2023
Posted by Jeff Dean, Chief Scientist, Google DeepMind & Google Research, Demis Hassabis, CEO, Google DeepMind,
and James Manyika, SVR, Google Research, Technology & Society

Automated Accelerator Optimization Aided by Graph Neural
Networks
Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong

Q
N a
9] Pl Computer Science Department, University of California - Los Angeles, USA
Resource & i 2| I s 54
O raplizade et al. [a) Q {atefehsz,yba,yzsun,cong}@cs.ucla.edu
y 0 =1 Abstract Ustun et al. [18] proposes a GNN-based model to learn the oper-
ate n Cy DAC 22] — E Using High-Level Synthesis (HLS), the hardware designers must ation mapping to FPGA's resources for delay prediction in HLS.
. describe only a high-level behavioral flow of the design. However, IronMan [21] uses GNN to predict the performance of the program
0 it still can take weeks to develop a high-performance architecture under different resource allocations (DSP or LUT) to the computa-
< — mainly because there are many design choices at a higher level tion nodes. Although their studies clearly demonstrate the value
POSt- P n R B . to explore. Besides, it takes several minutes to hours to evaluate and power of using GNN, none o these works include the pragmnas —_—
5 ey the design with the HLS tool. To solve this problem, we model in their input representation so their models cannot be used for —
rO n a n [} <o the HLS tool with a graph neural network that is trained to be finding the best design configuration. _—
| used for a wide range of applications. The experimental results In this paper, we aim to automate the design optimization using — —_—
eSO u rce N : demonstrate that our model can estimate the quality of designin ~ GNN with the support for model generalization by developing a prm— e —
’ > 8 milliseconds with high accuracy, resulting in up to 79x speedup framework called GNN-DSE. We first build a model to evaluate a pm— —_—
D 2 u e a . 0 (with an average of 48x) for optimizing the design compared to the design quickly, in milliseconds, without the invocation of the HLS e — ——
TI m I n g %a) previous state-of-the-art work relying on the HLS tool. tool. Since the HLS tools employ many heuristics to optimize a
— design and the design parameters affect each other, we let a deep
0 ACM Reference Format: learning model learn their impact. Furthermore, as the current
> Atefch Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022, HLS tools optimize the design based on specific code patterns,
d Automated Accelerator Optimization Aided by Graph Neural Networks. it is important to identify the different code patterns and learn
POSt' P n R o In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC) their effect to be able to transfer the knowledge we gained from
=] (DAC '22) July 10-14, 2022, San Francisco, CA, USA. ACM, New York, NY, gne application to another. As such, we represent the program as —_—
b USA, 6 pages. https:/dol.org/10.11453489517.353040 a graph which includes the program information in the form of —
Reso u rce & N . control, data, call, and pragma flows and exploit a GNN to extract —
y 5 1 Introduction the required features of the graph for predicting the objectives. e
[Wu et al D AC 22] High-Level Synthesis (HLS) was introduced to simplify the FGA ~ We propose several techniques for improving the accuracy of the J—

Timing
Post-PnR
Resource &
Timing
Post-PnR
Power

Post-PnR
Power

IronMan-Pro
[Wu et al. TCAD’23]

PowerGear
[Lin et al. DATE22]

HL-Pow
[Lin et al. TCAD’23]

rXiv

a

arXiv:2201.06848v1

programming by raising the abstraction level in design and soon
was embraced by both academia and industry [4, 16]. This is be-
cause the HLS tools let the designers optimize their microarchitec-
ture quickly by inserting a few synthesis directives in the form of
pragmas. This feature can potentially help shorten the design devel-

. However, not every HLS design has a good quality of
xesults [17]. Thus, one often has to explore many design choices for
each new application since the solution space grows exponentially
by the number of candidate pragmas. This can negatively impact
the design turn-around times.

“To speed up the design optimization, a new line of rescarch has
been created with the focus on automating the design space explo-
xation (DSE) for optimizing the microarchitecture. As summarized
in [14], the previous studies either use the HLS tool directly [17, 24],
or develop a model to mimic the HLS tool [11, 26] for evaluating
a design point. Relying on the HLS tool to evaluate a solution can
increase the DSE time significantly as each design candidate would
have a long evaluation time (minutes to hours) that forces us to
explore a reduced set of the solution space. While utilizing a model
can potentially speed up the process, a simple analytical model can-
not capture the different heuristies used by the tool [14]. Adopting a
learning algorithm can help with increasing the accuracy. However,
the related works build a separate learning model per application
and the resuls from one application are not transferred to another
one. A nice effort was made in Kwon ct al. [7] for transfer learn-
ing using a Multi-Layer Perceptron (MLP) network. Nonetheless,
they only use the pragma configurations as the input to the model,
which can result in considerable loss since the program semantics
are missing (see Section 5.2).

A few of the very recent works have proposed to use Graph
Neural Network (GNN) for predicting the design’s quality (18, 21]

model including Jumping Knowledge Network (JKN) 23], node

attention [9], and multi-head objective prediction. To demonsirate

the effectiveness of our model, we build a DSE on top of it to
find the Pareto-optimal design points. We show that not only can

GNN-DSE find the Pareto-optimal design points for the kernels that

were included in ts training set, it can also generalize to the kernels

outside of its database and detect their Pareto-optimal design points.

‘This paper is the first work to employ a graph representation that

captures both the program semantics and the pragmas, and to build

a single predictive model for several applications with transferring

learning capability. In this paper, we target Xilinx FPGAs as an

example but our approach is tool-independent and extendable to

Intel FPGAS as well,

In summary, this paper makes the following contributions

« We propose a graph-bascd program representation for optimiz-
ing FPGA designs which includes both the program context and
the pragma flow.

© We develop a learning model based on Graph Neural Network
(GNN) as a surrogate of the HLS tool for assessing a design
point’s quality in milliseconds and propose several techniques
for improving its accuracy.

« We build an automated framework, GNN-DSE!, to gather a data-
base of FPGA designs, train a learning model for predicting the
design’s objectives, and run a design space exploration based on
the model to close-in on a high-performance design point.

© The experimental results demonstrate that not only can
GNN-DSE find the Pareto-optimal design points for the ker-
nels in its database, but can also optimize the unseen kernels by
generalizing the knowledge it learned from its training set

E 1

computation

>
Q
=
o
b3
Q
=
(¢}

instructions

“We developed a novel GNN model to predict
the properties of tensor computation graphs,
enabling estimation of performance for ML
programs.”

Traditional GNNs Not Ideal for Computation Graphs

Non-computation graphs
(e.g., social and citation networks)

a(?) \ e<.) angn / @)

Homophily property — Nearby nodes
tend to have similar attributes
(sampling may help both speed and accuracy)

Learning local structures is
typically sufficient

Computation graphs
(e.g., logic networks, dataflow graphs)

X >— X 11>

57 o

Y : Sampling

Heterophily property — Nearby nodes
often represent different operations
(graph sampling breaks functionality)

Global structures also matter (if
not more)

18

ur Recent Efforts

DAC’24

Less is More: Hop-Wise Graph Attention for Scalable and
Generalizable Learning on Circuits

ICLR24 MLSys’25

POLYNORMER: POLYNOMIAL-EXPRESSIVE GRAPH
TRANSFORMER IN LINEAR TIME

G AT SCALE: CHARACTERIZING AND OPTIMIZING

Chenhui Deng!, Zichao Yue!, Cunxi Yu?, Gokce Sarar®, Ryan Carey®, Rajeev Jain®, Zhiru Zhang! PRE-PROPAGATION GNNS

Cornell University, 2University of Maryland, >Qualcomm Technologies, Inc.
{cd574,zy383,zhiruz}@cornell.edu,cunxiyu@umd.edu,{gsarar, rcarey, rajeevjl@qti.qualcomm.com

Chenhui Deng, Zichao Yue, Zhiru Zhang
Cornell University, Ithaca, USA
{cd574, zy383, zhiruz}@cornell.edu

ABSTRACT 0 Zichao Yue' Chenhui Deng?” Zhiru Zhang'
While graph neural networks (GNNs) have gained popularity for o
ABSTRACT learning circuit representations in various electronic design automa- & @ == D MlLaerPecepton ABSTRACT

tion (EDA) tasks, they face challenges in scalability when applied o ot
to large graphs and exhibit limited generalizability to new designs. @e®E —® D Gated Sol-Atention
These limitations make them less practical for addressing large- (&) Atoy graph

scale, complex circuit problems. In this work we propose HOGA,

Graph neural networks (GNNs) are widely used for learning node embeddings in graphs, typically adopting a
message-passing scheme. This approach, however, leads to the neighbor explosion problem, with exponentially
growing computational and memory dema s layers increase. Graph sampling has become the predominant
method for scaling GNNGs to large graphs, mitigating but not fully solving the issue. Pre-propagation GNNs (PP-
GNNG) represent a new class of models that decouple feature propagation from training through pre-processing,
addressing neighbor explosion in theory. Yet, their practical advantages and system-level optimizations remain
underexplored. This paper provides a comprehensive characterization of PP-GNNs, comparing them with graph-

Graph transformers (GTs) have emerged as a promising architecture that is the-
oretically more expressive than message-passing graph neural networks (GNNs).
However, typical GT models have at least quadratic complexity and thus can-
not scale to large graphs. While there are several linear GTs recently proposed,
they still lag behind GNN counterparts on several popular graph datasets, which
poses a critical concern on their practical expressivity. To balance the trade-off be-

a novel attention-based model for learning circuit representations
in a scalable and generalizable manner. HOGA first computes hop-
wise features per node prior to model training. Subsequently, the

hop-wise features are solely used to produce node representations

tween expressivity and scalability of GTs, we propose Polynormer, a polynomial- through a gated self-attention module, which adaptively learns (b) Node-wise aggregation (prior work) (¢) Hop-wise aggregation (ours) sampling-based methods in training efficiency, scalability, and accuracy. While PP-GNNs achieve comparable
expressive GT model with linear complexity. Polynormer is built upon a novel important features among different hops without involving the Figure 1: Comparison of HOGA and prior GNNs — (a) An accuracy, we identify data loading as the key bottleneck for training efficiency and input expansion as a major
base model that learns a high-degree polynomial on input features. To enable graph topology. As a result, HOGA is adaptive to various structures ple graph for il ion; (b) GNN ion graph; scalability challenge. To address these issues, we propose optimized data loading schemes and tailored training
the base model permutation equivariant, we integrate it with graph topology and across different circuits and can be efficiently trained in a distributed (c) Computation graph of our proposed approach, HOGA. methods that improve PP-GNN training throughput by an average of 15x over the PP-GNN baselines, with

manner. To demonstrate the efficacy of HOGA, we consider two
representative EDA tasks: quality of results (QoR) prediction and
functional reasoning. Our experimental results indicate that (1)
HOGA reduces estimation error over conventional GNNs by 46.76%
for predicting QoR after logic synthesis; (2) HOGA improves 10.0%

node features separately, resulting in local and global equivariant attention mod-
els. Consequently, Polynormer adopts a linear local-to-global attention scheme to
learn high-degree equivariant polynomials whose coefficients are controlled by at-
tention scores. Polynormer has been evaluated on 13 homophilic and heterophilic
datasets, including large graphs with millions of nodes. Our extensive experiment

speedup of up to 2 orders of magnitude compared to sampling-based GNNs on large graph benchmarks. Our
implementation is publicly available at ht tps://github.com/cornell-zhang/preprop-gnn.

hand, unlike common datasets on social networks and molecular
graphs, which consist of either a few large graphs or a large num-
ber of small graphs, the circuit datasets may contain numerous

large graphs. For instance, the OpenABC-D benchmark provides

1 INTRODUCTION footprint during message passing. Those models encompass

results show that Polynormer outperforms state-of-the-art GNN and GT baselines
on most datasets, even without the use of nonlinear activation functions. Source
code of Polynormer is freely available at: github.com/cornell-zhang/Polynormer.

1 INTRODUCTION

As conventional graph neural networks (GNNs) are built upon the message passing scheme by ex-
changing information between adjacent nodes, they are known to suffer from over-smoothing and
over-squashing issues (Oono & Suzuki, 2020; Alon & Yahav, 2021; Di Giovanni et al., 2023), re-
sulting in their limited expressive power to (approximately) represent complex functions (Xu et al.,
2018; Oono & Suzuki, 2020). Inspired by the advancements of Transformer-based models in lan-
guage and vision domains (Vaswani et al., 2017; Dosovitskiy et al., 2021), graph transformers (GTs)
have become increasingly popular in recent years, which allow nodes to attend to all other nodes in a
graph and inherently overcome the aforementioned limitations of GNNs. In particular, Kreuzer et al.
(2021) have theoretically shown that GTs with unbounded layers are universal equivariant function
approximators on graphs. However, it is still unclear how to unlock the expressivity potential of GTs

reasoning accuracy over GNNs for identifying functional blocks
on unseen gate-level netlists after complex technology mapping;
(3) The training time for HOGA almost linearly decreases with an
increase in computing resources. Source code of HOGA is freely
available at: github.com/cornell-zhang/HOGA.

1 INTRODUCTION
Recent years have seen a surge of interest in machine learning
(ML) for electronic design automation (EDA), which holds great
potential in achieving faster design closure and minimizing the need
for extensive human supervision [9]. In particular, graph neural
networks (GNNs) have become increasingly popular in the EDA
community due to their ability to encode graph-structured data
such as gate-level netlists into compact representations, which can
be used for a multitude of downstream EDA applications, including
quality of results (QoR) prediction and functional reasoning [13, 18].
However, scaling GNN training to large graphs is a notoriously
challenging problem, which poses a serious concern on the prac-
tical benefit of GNN on large-scale EDA problems. On the one

870k gate-level netlists, where each netlist consists of up to 240k
logic gates [5]. Thus, training GNNs on such a large-scale circuit
dataset is even more challenging than other graph-based applica-
tions. On the other hand, modern GNN models are built upon a
passing paradigm, which learns r ions through
a recursive node-wise aggregation scheme shown in Figure 1(b).
As a consequence, it is nontrivial to perform efficient distributed
GNN training due to the node dependencies in a graph structure.
Apart from the hall it is also und lored
how to make GNNs generalizable across different circuit designs.
Although there are many customized GNN previously proposed
for various EDA applications, their model backbones mainly follow
classic GNN's such as GCN [10] and GraphSAGE [8], which are
not necessarily suitable for circuit problems. Consider a task of
identifying functional blocks within circuits [18]. As distinct func-
tional blocks may have different depths, the number of hops to be
considered varies across nodes, which cannot be easily captured by
common GNNs. Moreover, the high-order structures of functional
blocks are also important yet ignored by the aforementioned GNN
models. As a result, existing GNN's for EDA tasks often struggle

Message-passing-based graph neural networks (MP-GNNs)
have become a cornerstone for graph representation learning,
achieving success in various tasks like node classification
(Velickovi¢ et al., 2018; Wu et al., 2023; Kipf & Welling,
2017), link prediction (Zhang & Chen, 2018; Schiitt et al.,
2017), and graph clustering (Zhang et al., 2019; Ying et al.,
2018b; Tsitsulin et al., 2023). However, scaling MP-GNNs
to large graphs remains a significant challenge.

The message-passing framework (Gilmer et al., 2017) con-
sists of two iterative steps: (1) feature aggregation and (2)
transformation. Within this framework, each node collects
feature embeddings from its neighbors and then transforms
them using a learnable function. We show the architecture of
MP-GNN models in Figure 1. The main challenge in scaling
MP-GNNs to large graphs stems from the “neighbor explo-
sion” problem (Hamilton et al., 2017), where nodes must re-

node-wise sampling to limit neighborhood sizes per node
(Chen et al., 2017; Hamilton et al., 2017), layer-wise sam-
pling to reduce node counts per layer (Chen et al., 2018;
Zou et al., 2019), and graph-wise sampling to control over-
all subgraph size (Chiang et al., 2019; Zeng et al., 2020).
However, the sampling-based GNNs face several major lim-
itations. First, node-wise sampling methods only partially
mitigate the neighbor explosion problem, as their time com-
plexity still increases exponentially with the number of lay-
ers. More importantly, the sampling algorithms modify the
graph topology by design, which inevitably breaks the func-
tionality of computation graphs such as logic networks (Wu
et al., 2023) and dataflow graphs (Phothilimthana et al.,
2024), resulting in accuracy degradation on their down-
stream tasks (Deng et al., 2024).

To circumvent the limitations of MP-GNNS, a new class of

in practice since the number of GT layers is typically restricted to a small constant. models known as pre-propagation GNNs (PP-GNNs) has

Global structures can be

learned efficiently

— SoTA accuracy on both homophilic
& heterophilic graphs, including
Google TPUGraphs (ICLR’24)

Feature pre-propagation enables scalable dense GNN training by
avoiding message passing bottlenecks

= much improved accuracy & generalizability on computation graphs (DAC’24)
— 10-100x faster training than conventional message passing GNNs (MLSys’25)

Ongoing: Agentic E-Graph Rewriting for RTL Optimization

Goal: Improve RTL datapath optimizations by combining

LLM agents with e-graph rewriting Critical -’ - UQD LLM Agent
= Fully automated
= Real PPA guidance Rewnte <]s Learnable | _ PPA Feedback
: . = Extensible “"> Cost Model
Approach (in collab. with NVIDIA) C j y
Construct Extract
» Leverage LLM agents to propose, prove, select e- R @
graph rewrite rules I
. . J/
» Instead of relying on heuristic cost models, use real e -
. ~ 0 Engineered Proxy Cost
PPA feedback from EDA tools to guide e-graph oo RuleSet Model
extraction
Preliminary Results on a suite of open-source RTL Rule Proposal Agent Cewrite
. . I \/ o = Proposed
datapath-intensive benchmarks (to appear in MLCAD’25) rules , @ e s
i . =|| = nE. Z3 proof
» Improves on average 24% in area and 12% in delay 1 programs
. . Initial Rules M hhhhhh
over a commercial synthesis tool Example rule Initial Rules
Z3 proof

» |ldentifies Pareto frontier of PPA trade-offs _
Rewrite rule proposal agent

20

Ongoing: Differentiable Optimization Beyond E-Graph Extraction

Differentiable probabilistic optimization methods apply to a range of key
compiler/synthesis problems—more results coming soon!

+
= <<
¥ dx| ___
+
COS&x < +
Term rewriting Graph covering Scheduling
(expression-, loop-level, (instruction selection, (+ resource allocation,
graph-level transforms) tech mapping) module selection)

Can also be paired with other metaheuristics (e.g., evolutionary search) to better
escape local minima

21

HEURISTIC
Q FEEDBACK

OPTIMIZATION
PROBLEM

Research Question 2

def f(x):..
(for

k}...—

EVALUATION

o5
ool

To what extent can Al replace
humans in crafting optimization

algorithms for compilers?

HeuriGym: Agentic Benchmarking for LLM-Generated Heuristics

arXiv:2506.07972v1 [cs.LG] 9 Jun 2025

HeuriGym: An Agentic Benchmark for LLM-Crafted
Heuristics in Combinatorial Optimization

Hongzheng Chen'* Yingheng Wang'* Yaohui Cai'* Hins Hu'* Jiajie Li'*
Shirley Huang” Chenhui Deng® Rongjian Liang® Shufeng Kong'
Haoxing Ren® Samitha Samaranayake' Carla P. Gomes' Zhiru Zhang'

! Cornell University 2 Harvard University ~ ® NVIDIA Corporation
{hzchen,yingheng}@cs.cornell.edu, {yc2632,zh223, j14257}@cornell.edu

Abstract

While Large Language Models (LLMs) have demonstrated significant advance-
ments in reasoning and agent-based problem-solving, current evaluation method-
ologies fail to adequately assess their capabilities: existing benchmarks either rely
on closed-ended questions prone to saturation and memorization, or subjective
comparisons that lack consistency and rigor. In this work, we introduce HeuriGym,
an agentic framework designed for evaluating heuristic algorithms generated by
LLMs for combinatorial optimization problems, characterized by clearly defined
objectives and expansive solution spaces. HeuriGym empowers LLMs to propose
heuristics, receive evaluative feedback via code execution, and iteratively refine
their solutions. We evaluate nine state-of-the-art models on nine problems across
domains such as computer systems, logistics, and biology, exposing persistent
limitations in tool use, planning, and adaptive reasoning. To quantify performance,
we propose the Quality-Yield Index (QYI), a metric that captures both solution pass
rate and quality. Even top models like GPT-04-mini-high and Gemini-2.5-Pro
attain QY1 scores of only 0.6, well below the expert baseline of 1. Our open-source
benchmark aims to guide the development of LLMs toward more effective and
realistic problem-solving in scientific and engineering domains.

1 Introduction

Recent advancements in Large Language Models (LLMs) have significantly expanded their capa-
bilities in complex reasoning and agent-based problem-solving, enabling applications ranging from
automated code generation [25, 79, 177] to dynamic decision-making systems [126, 165]. Despite
these breakthroughs, existing evaluation frameworks struggle to rigorously assess the full spectrum of
LLMs’ emergent abilities. Traditional benchmarks increasingly fail to capture the nuanced demands
of real-world tasks that require iterative reasoning, creative algorithm design, and adaptive tool
use. This limitation creates a critical gap in understanding whether LLMs can transcend pattern
recognition and demonstrate genuine problem-solving ingenuity in real-world scenarios.

\JT’ \A\J\, ?
) v U

Y |eaderboard cs.LG arXiv:2506.07972 | @Hugging Face ’euﬁgym

[§About - Problems - ¢#)Quick Start - 27LLM Solver Agent - < Contribute - [l Citation

I About

HeuriGym is a benchmark for evaluating how well LLMs generate and refine heuristics for real-world combinatorial
optimization (CO) tasks through agentic, code-driven interaction.

/ @ Problem Description N g Heuristic Final
Background Prompt > 2 Generate Results
Operator scheduling is an important stage [——» —) def solve(input file: str, A
in electronic design automation (EDA), ... solution file: str): f====-= m

- 1
LLM 15
Formalization A g
Consider a control data flow graph (CDFG) i Stage I: Execution g

.., the operator scheduling problem
is to find a feasible schedule $s \in S$
that minimizes the overall latency SL$

L q Demo
(—Er‘:gfs—[o Compiler / Interpreter J(—%
% Solution File

Stage llI: Verification

min max(t; + d;)
seS i€0

Input Format
The input is provided in JSON format

Feedback

with the following structure:

**“json Constraints i
o Satisfaction @Q Vi

44 Output Format

The output should provide the execution Cost l
schedule of the program. For example, / [Ill Evaluator <

-

arxiv.org/abs/2506.07972

github.com/cornell-zhang/heurigym

23

http://github.com/cornell-zhang/heurigym
https://arxiv.org/abs/2506.07972

HeuriGym Benchmarks

> A representative mix of 9 combinatorial optimizations problems

— Well-defined objectives
— Large solution spaces
— Scalable data instances

— Reproducible expert baselines

Domain Problem Difficulty
Electronic Design ?i?ﬁ;?g;;h;i;g?fg ***
Automation (EDA) Global routing oA K
: E-graph extraction *
Compilers Intra-operator parallelism * %
Computational Protein sequence design *
Biology Mendelian error detection * %
Logistics Airline crew pairing * %

Pickup and delivery w/ time windows

* kk

24

HeuriGym Evaluation (1)

> A new metric tracks the LLM’s ability to solve problems within i iterations:

N

1 . e
solve Qi := I Z 1 (pass stage s in the first i-th iteration)

n=1

Stage I: Code compiles successfully

Stage II: Executable produces non-empty output
Stage IlI: Output is verified as a feasible solution

solverrr solverr solver

Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 46.8% 42.7% 14.2% 87.6% 83.0% 66.1% | 100.0% 100.0% 90.8%
DeepSeek-R1 734% 729% 44.0% 88.1% 88.1% 60.6% | 100.0% 100.0% 71.6%
Gemini-2.5-Flash 674% 583% 25.2% 83.9% 79.4% 56.4% | 100.0% 100.0% 72.9%
Gemini-2.5-Pro 65.1% 64.2% 20.2% 89.4% 89.0% 42.7% | 100.0% 100.0% 51.4%
LLaMA-4-Maverick 35.8% 33.5% 6.0% 84.9% 74.3% 8.3% 85.3% 85.3% 13.3%
LLaMA-3.3-70B 339% 33.9% 20.6% 78.4% 78.4% 40.4% 99.5% 99.5% 61.9%
Qwen3-235B 459% 45.4% 38.5% 86.2% 83.0% 56.0% | 100.0% 100.0% 70.6%
Claude-3.7-Sonnet | 60.1% 58.7% 9.2% 97.7% 97.7% 41.3% | 100.0% 100.0% 60.1%
GPT-04-mini 74.8% 69.7% 53.2% | 100.0% 100.0% 93.1% | 100.0% 100.0% 100.0%

Even SoTA LLMs only yield ~70% feasible solutions

25

Quality

HeuriGym Evaluation (2)

Quality-Yield Index (QYI)
2-Quality- Yield
Quality + Yield

QYI =

A

N
lity = Yield = —
Quality — me(“) viela=

penalizes imbalanced values more strongly than arithmetic mean (similar to F-score)

A rich trade-off space of quality and yield
1.0
QYI1=0.20
QYI1=0.40
0.8 QYI1=0.60
QYI=0.80
0.6 Gemini-2.5-Pro‘
Gemini-2.5-Flash GPT-04-mini
Qwen3-235B QDeepSeek R1
0.4 - . .Clau e-3.7-Sonnet
DeepSeek-V3.
0.2 LLaMA-3.3-70B
Olo I I 1 1
0.0 0.2 0.4 0.6 0.8

Yield

1.0

» SOTA LLMs achieve a QY| score
of ~0.6 (1.0 = human expert)

» More results available on
HeuriGym leaderboard

fﬁcornell-zhan .qithub.io/heurigym

26

https://cornell-zhang.github.io/heurigym

My Predictions — Parting Thought

Where are we now?

Where are we heading
in the next few years?

What could be the next
big game changer?

Desian COmp”er Chlp/ArCh
(Mant?al) Construction Specification
(Manual) (Manual)

Desian Compiler Chlp/ArCh
(Aut?)) Construction Specification
(Manual) (Manual)

Desian Compiler Chip/Arch.
9 Construction Specification

(Auto, Verified)

(Auto, Verified)

(Auto, Verified)

a true virtuous cycle

27

