
Hypothesizing
(Fantasizing)

Autonomous Hardware Design
Zhiru Zhang

Cornell University

AI4FACD Workshop @ ISCA
6/21/2025

The Powerful Reasoning LLM

Training
Data

Verifiable
Reward

Ri =
1 if correct

0 otherwise

reward

prompt Agent
(LLM)

action
(prompt

completions)

Performs well on many math and coding tasks, where
• Problems are verifiable
• LLM+RL navigates large search space by balancing exploration of

new solutions and exploitation of proven approaches from pretraining

Replicating the Same Approach for Hardware Design?

New Design
(HDL/HLS)

Compiler
(CAD Tool)Agent

Prompt Optimized
Design

Criteria
Met

No

Feedback
(compiles? functional? performant?)

Any showstoppers to this approach?

Learning the Bitter Lesson by Rich Sutton [1]

New Design
(HDL/HLS)

Compiler
(CAD Tool)

Optimized
Design

Criteria
Met

No

Most significant progress in AI has come from scaling – More compute, data,
and general meta-methods beat specialized, human-designed strategies in the long run

Bottleneck: Current HW compilation stack doesn’t
scale and relies heavily on handcrafted heuristics L

Feedback
(compiles? functional? performant?)

Prompt

[1] http://incompleteideas.net/IncIdeas/BitterLesson.html (March 2019)

Agent

http://incompleteideas.net/IncIdeas/BitterLesson.html

Active Research: Neural Approximations of the Compiler

Design space exploration
(or autotuning)

tool configuration,
pragma settings, …

Compiler
(CAD tool)

measured performance (ground truth for training)

estimated performance (prediction during inference)

Proxy model for
performance
prediction

• Data hungry – extensive (in distribution) training required
• Compiler remains a black box and a bottleneck for training runs

4

Research Question 1
Instead of just compilers calling ML and vice versa,
can we push toward a deeper, more unified integration?

5

Compiler ML Modelcalling

6

▸ Most compiler/synthesis optimizations rely on ad hoc local heuristics, are
hard to parallelize, and typically run on CPUs using few threads

▸ The granularity and order of these optimizations are manually preset, known
as the phase ordering problem
– The “optimal” sequence may differ across input problems and hardware targets

Deep-rooted Problems in Compiler/Synthesis Tools

Canonicalization
Mem2Reg, InstCombine,

CFGSimplify

Scalar Simplification
InstCombine, CFGSimplify

Simple Loop Opts
Loop Rotate, Loop Unswitch,

Loop Delete, Loop Unroll

Target Specialization
Loop Vectorization, Loop

Distribution, SLP Vectorization

LLVM
IR

LLVM
IR

Typical Flow of Software Compiler Optimization

Parsing/Translation
Datapath extraction,

FSM encoding

Datapath Optimization
Strength reduction, CSE,

Bitwidth optimization

Logic Synthesis
Decomposition, Restructuring,
Rewrite, Refactoring, Balance

Technology Mapping
Cut enumeration,

Decomposition, Covering
HDL Netlist

Typical Flow of Hardware Synthesis Optimization

A Radical Ground-up Approach?

7

Transformation
Space

Search
Method

Objective
Function

Current
Approach

Phase ordered
 transforms (mostly local)

Differentiable
Approach?

Formal, compact encoding
of equivalent transforms

Parallelized global
optimalization

Realistic, non-linear
cost models

Heuristics running on
CPUs (mostly 1 thread)

Hand-crafted cost models
(mostly linear costs)

×

+

b 2 a

<<

1

Global
minimum

Local
minimum

Gradient DescentMeta IR Learnable Cost

Compiler / Synthesis
Optimization

E-Graph as a Meta IR

×

+

b 2 a

<<

1
E-class is a set of e-nodes,

containing equivalent expressions
ec ∷= $!, $", …

E-node is an expression (or function) that
depends on a list of child e-classes

$ ∷= '()*!,)*", …)

8

e-graph Apply
Rewrites

(until fixed point)

[1] Greg Nelson, Techniques for Program Verification, 1980.
[2] Ross Tate et al., Equality Saturation: A New Approach to Optimization, POPL 2009.

e-graph is a data structure that efficiently
represents equivalent programs using e-nodes
(expressions) and e-classes (sets of equivalent
e-nodes)

Equality saturation expands e-graph until no
more rewrites apply, enabling optimal
expression extraction with given costs

Given
▸ An input program: a + b × 2
▸ A rewrite rule: t × 2 → t ≪ 1

9

Broad Applications of E-Graphs
add
64

add
32

<<

mul
16

mul
16

16

add
64

&

<<
mul
17

mul
1

mul
16

sub
34

add
32

add
16

add
16

mul &

and
1

>>

<<

IMpress: large multiplication [FCCM’22] Rover: RTL optimization [TCAD’24]

4692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE II
ROVER’S BITWIDTH AND SIGNAGE DEPENDENT DATAPATH REWRITES. BITWIDTH AND SIGNAGE PARAMETERS ARE OMITTED HERE.

THE ∗ OPERATION REPRESENTS BOTH {+,×}. THE RULES ARE CONDITIONALLY APPLIED AS A FUNCTION OF THE
BITWIDTH AND SIGNAGE INFORMATION ATTACHED TO EACH OPERAND. THE NECESSARY AND SUFFICIENT CONDITIONS ARE TOO COMPLEX

(DENOTED BY †) TO DISPLAY IN COLUMN 4 FOR MOST REWRITES

for which this statement holds is small. To enable meaningful
RTL transformations, we define a set of conditionally applied
rewrites specified as a triple (cond,term,term), where

cond : map → Bool.

The condition is checked each time the left-hand side term
of a rewrite is matched. The partially evaluated right-hand
side is only added to the e-graph if the condition returns true.
That is, the condition for correctness of a conditional rewrite
(φ, lhs, rhs) is that for any map m

φ(m) ⇒ !lhs"m ∼= !rhs"m. (9)

In Fig. 5, we provide an example, to highlight where the
validity of a rewrite can depend on the context. Specifically,
the associativity rewrite is valid in the case where the
intermediate signal retains the carry-out of the first addition.

Conditional rewriting allows ROVER to detect all syntactic
opportunities to apply a transformation and then filter out those
that would be semantically invalid. Such an approach allows
ROVER to capture a wide range of RTL transformations
without sacrificing correctness. In Section IV-B we describe
the construction of the conditions and return to this example
to construct a condition for this exact associativity rewrite.

Figure 5. Verilog associativity rewriting example. Signals left1 and right
are functionally distinct, because the carry-out is discarded in computing
add_8bit, therefore left1̸→right. The signals left2 and right are
functionally equivalently, therefore it is valid to rewrite left2→right.

The set of rewrites described in Table II captures optimiza-
tions learned from Intel’s Numerical Hardware Group, prior
work [3] and logic synthesis documentation [11], [12]. All
rewrites include the type annotations described in Section III.
We impose no restrictions on the bitwidth and signage param-
eters in the rewrites, to ensure maximum generality of the
rewrites. We omit the bitwidth and signage annotations as well
as the conditions in Table II to maintain readability.

Authorized licensed use limited to: UCLA Library. Downloaded on April 26,2025 at 20:07:58 UTC from IEEE Xplore. Restrictions apply.

4692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE II
ROVER’S BITWIDTH AND SIGNAGE DEPENDENT DATAPATH REWRITES. BITWIDTH AND SIGNAGE PARAMETERS ARE OMITTED HERE.

THE ∗ OPERATION REPRESENTS BOTH {+,×}. THE RULES ARE CONDITIONALLY APPLIED AS A FUNCTION OF THE
BITWIDTH AND SIGNAGE INFORMATION ATTACHED TO EACH OPERAND. THE NECESSARY AND SUFFICIENT CONDITIONS ARE TOO COMPLEX

(DENOTED BY †) TO DISPLAY IN COLUMN 4 FOR MOST REWRITES

for which this statement holds is small. To enable meaningful
RTL transformations, we define a set of conditionally applied
rewrites specified as a triple (cond,term,term), where

cond : map → Bool.

The condition is checked each time the left-hand side term
of a rewrite is matched. The partially evaluated right-hand
side is only added to the e-graph if the condition returns true.
That is, the condition for correctness of a conditional rewrite
(φ, lhs, rhs) is that for any map m

φ(m) ⇒ !lhs"m ∼= !rhs"m. (9)

In Fig. 5, we provide an example, to highlight where the
validity of a rewrite can depend on the context. Specifically,
the associativity rewrite is valid in the case where the
intermediate signal retains the carry-out of the first addition.

Conditional rewriting allows ROVER to detect all syntactic
opportunities to apply a transformation and then filter out those
that would be semantically invalid. Such an approach allows
ROVER to capture a wide range of RTL transformations
without sacrificing correctness. In Section IV-B we describe
the construction of the conditions and return to this example
to construct a condition for this exact associativity rewrite.

Figure 5. Verilog associativity rewriting example. Signals left1 and right
are functionally distinct, because the carry-out is discarded in computing
add_8bit, therefore left1̸→right. The signals left2 and right are
functionally equivalently, therefore it is valid to rewrite left2→right.

The set of rewrites described in Table II captures optimiza-
tions learned from Intel’s Numerical Hardware Group, prior
work [3] and logic synthesis documentation [11], [12]. All
rewrites include the type annotations described in Section III.
We impose no restrictions on the bitwidth and signage param-
eters in the rewrites, to ensure maximum generality of the
rewrites. We omit the bitwidth and signage annotations as well
as the conditions in Table II to maintain readability.

Authorized licensed use limited to: UCLA Library. Downloaded on April 26,2025 at 20:07:58 UTC from IEEE Xplore. Restrictions apply.

Many Others …

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cheng et al.

func

args returnsblock

seq seq

loop_1 loop_2 loop_3

seq seq loop_2_3

Seq associative rule:
(seq (seq loop_1 loop_2) loop_3)

(seq loop_1 (seq loop_2 loop_3)

Loop fusion rule:
(seq loop_2 loop_3)

condition = MLIR changed & No error

loop_2_3

block:
affine.for {
… } {op_name = loop_1}

affine.for{
… } {op_name = loop_2}

affine.for{
… } {op_name = loop_3}

block:
affine.for {
… } {op_name = loop_1}

affine.for{
… } {op_name = loop_2_3}

mlir-opt
–-affine-loop-fusion

1

2
extract transform

union

extract

validate

transform & union

unconditional

Figure 8. E-graph exploration of the motivational example (Figure 2) using SEER. The e-graph is simpli�ed by merging
subgraphs of loops into single nodes. The green nodes represent the initial e-graph obtained from Listing 1. 1� illustrates an
example of an unconditional rewrite for a sequential association inside egg. For rewrite 1�, the original sub-expression in the
shaded red region is rewritten to the red node in the same e-class. 2� illustrates an example of a conditional rewrite for loop
fusion through MLIR. For rewrite 2�, the original sub-expression in the shaded blue region is rewritten to the blue node in the
same e-class.

for (i=0; i<N; i++)
x[3*i] =
f(x[(i<<1)+i]);

for (i=0; i<N; i++)
x[(i<<1)+i] =
g(x[3*i]);

for (i=0; i<N; i++)
x[3*i] =
f(x[3*i]);

for (i=0; i<N; i++)
x[3*i] =
g(x[3*i]);

Extraction for
static analysis

for (i=0; i<N; i++)
x[3*i] =
g(f(x[3*i]));

Loop fusion
for (i=0; i<N; i++)
x[(i<<1)+i] =
g(f(x[(i<<1)+i]));

E-graph

Union

Init

Extraction for
hardware synthesis

Figure 9. An example of extracting representations using cost
functions for static analysis and hardware synthesis.

for (i=0; i<4; i++)
if (cond[i])
...

if (cond[0])
...;

if (cond[1])
...

if (cond[2])
...

if (cond[3])
...

Static analysis
The branches have
the same body

If correlation

cond[0] +
cond[1] +
cond[2] +

cond[3] <= 1 if (cond[0]
|| cond[1]
|| cond[2]
|| cond[3])
...

loop unrolling
Static analysis

Figure 10. An example of using program invariants from
static analysis of one representation for transformation
of another.

would not be possible in a traditional compiler. Note that the
fusion of loop_1 and loop_2_3will be attempted but will fail
due to the validity checks. The e-graph grown after several
rewriting iterations, represents the explored design space of
equivalent implementations. From this e-graph SEER must
now select an e�cient HLS implementation.

4.5 Deeper Optimization Opportunities
Prior work observed how retaining multiple representations
in an e-graph can improve program analysis [12]. Here we
observe a practical bene�t of this, allowing SEER to discover
implementations that are unreachable with existing com-
piler passes. SEER can learn program invariants from one
representation which it can use to rewrite any equivalent
representation.
Firstly, we shall describe how SEER can resolve loop de-

pendence analysis limitations. Existing loop optimization
passes use polyhedral analysis to detect any loop dependency
issues. Such tools are unable to analyze memory access pat-
terns that are not obviously a�ne. This introduces a tension,

as a representation for e�cient hardware synthesis could
be complex for static analysis. For example in Figure 9, the
memory access index (i«1)+i is area-e�cient in hardware
because the shift operation is area-free in ASIC design, and
only one adder is used. Polyhedral analysis tools will fail to
interpret such a non-a�ne access pattern and conservatively
may prevent subsequent loop optimizations.

Applying the data path rewrites to an e-graph containing
(i«1)+i as shown in Figure 4, SEER discovers the equivalent
a�ne expression 3*i, which is interpretable by the static
analyzer. Such an expression may not be area-e�cient since
it uses a multiplier.

Starting from an initial e-graph containing the input pro-
gram in Figure 9, SEER applies data path rewrites, discover-
ing a representation where both memory indices are in a�ne
form (top right). When SEER calls its loop fusion pass, it is
presentedwith a choice of many equivalent loop implementa-
tions which it could pass to the external compiler pass. SEER
aims to pass on analysis-friendly implementations, namely
those with a�ne memory accesses. To achieve this SEER

SEER: high-level synthesis [ASPLOS’24]

TENSAT: tensor graph
optimization [MLSys’21]

Equality Saturation for Tensor Graph Superoptimization

Let hi denote the set of children e-classes for e-node i. Let
g(i) denote the e-class of e-node i, i.e. i 2 eg(i). Let m = 0
be the root e-class. Each e-node is associated with a cost ci.

We then formulate our problem as follows:

Minimize: f(x) =
X

i

cixi

Subject to:

xi 2 {0, 1}, (1)
X

i2e0

xi = 1, (2)

8i, 8m 2 hi, xi 

X

j2em

xj , (3)

8i, 8m 2 hi, tg(i) � tm � ✏+A(1� xi) � 0, (4)
8m, 0  tm  1, (5)

Here we introduce a binary integer variable xi for each
e-node i; node i is selected if xi = 1, and not selected
otherwise. Constraint (2) ensures that one node is picked
in the root e-class. Constraint (3) ensures that if a node
is picked, then at least one node in each of its children e-
classes needs to be picked. We rely on the fact that at the
optimal solution, each e-class can have at most one picked
node (otherwise we can remove more picked nodes in this
e-class to reduce the objective while still satisfying all the
constraints). Constraints (1)–(3) and the objective encode
the main extraction logic.

A more subtle requirement on the extraction phase is that the
extracted graph cannot contain cycles. While the e-graph
can (and likely will) contain cycles, the extracted graph is
meant to map directly to an executable tensor DAG. The
extraction procedure must therefore take care to respect the
acyclic invariant of DAGs.

Figure 3 shows an example to illustrate how valid rewrites
can produce cycles in the e-graph. To ensure the extracted
graph does not contain cycles, we introduce a real variable
tm for each e-class m in the ILP. Constraint (4) ensures that
the order defined by tm’s is a valid topological order for
the extracted graph. Here ✏ < 1/M is a small constant for
effectively encoding strict inequalities in ILP. A is a large
enough constant such that A > 1 + ✏. Constraint (5) is to
limit the range for the topological order variables tm’s.

We also experiment with using integer variables for tm’s.
In this case, tm’s are constrained to take integer values
between 0 to M � 1. Constraint (4) changes accordingly to:
8i, 8m 2 hi, tg(i) � tm +A(1� xi) � 1, where A � M .

Unlike greedy extraction, the optimal solution to the ILP is
guaranteed to give a valid graph (no cycles) with the lowest
cost.

matmul

X Y

matmul

matmul

X Y

matmul

split

split_0 split_1

matmul

concat_2

1

Figure 3. Example on how a valid rewrite can introduce cycles into
the e-graph. RHS is the resulting e-graph after applying the rewrite
rule from Figure 2 to the LHS. Dotted lines circles the e-classes.
We omit the e-classes with a single node for clarity. If the node
split1 is picked in the right e-class, then the resulting graph will
have a cycle (indicated by the red edges).

5.2 Cycle Filtering

Similar to previous work that uses ILP extraction (Tate et al.,
2009; Wang et al., 2020), we find that as the size of the e-
graph grows bigger, the ILP solver takes a long time and
becomes the main bottleneck. This is mainly due to the cycle
constraint (4): ILP solver struggles to find a feasible solution
with these constraints. Therefore, we explore an alternative
approach by filtering cycles during the exploration phase to
make sure that the e-graph does not contain any cycles at
the end of the exploration phase. This way, we can get rid
of the cycle constraints in the ILP.

Vanilla cycle filtering The first method is to check if ap-
plying a substitution introduces cycles to the e-graph, and
discard such a substitution. This check is run every time be-
fore applying a substitution. Each check requires a pass over
the entire e-graph. For one iteration during the exploration
phase, this vanilla cycle filtering has complexity O(nmN),
where N is the current size of the e-graph and nm is the
total number of matches of the rewrite rules on the e-graph.

Efficient cycle filtering As the number of matches nm is
typically large and scales with N , vanilla cycle filtering can
be slow. We therefore design a novel and more efficient cy-
cle filtering algorithm, consisting of a pre-filtering step and
a post-processing step. Algorithm 2 shows the pseudocode
for the exploration phase with efficient cycle filtering.

At the start of each iteration, we do one pass over the e-graph
to record the set of descendent e-classes for each e-node
(stored in a descendants map). During the iteration, for each
match of the rewrite rules, we use the pre-stored descendants
map to check if applying a rule introduces cycles to the e-
graph; if so, we skip this match. Line 3–9 implements the
pre-filtering step. Notice that this check is sound but not
complete: a match that passes this check can still introduce
cycles to the e-graph. This is because new descendants
relations introduced by the previous rewrite in this iteration
are not included in the pre-stored descendants map.

Vectorization for Digital Signal Processors via Equality Saturation ASPLOS ’21, April 19–23, 2021, Virtual, USA

their vectorized equivalents. For example, the rule for introducing
vectorized add instructions, VecAdd:

(Vec (+ a b) (+ c d))! (VecAdd (Vec a c) (Vec b d))

applies twice to the example above, producing:

(Concat (VecAdd (Vec (Get a 0) (Get a 1))

(Vec (Get b 0) (Get b 1)))

(VecAdd (Vec (Get a 2) (Get a 3))

(Vec (Get b 2) (Get b 3))))

Here, the indices in the Get expression determine the data move-
ment strategy required for this program. In this case, the pairs of
indices 0, 1 and 2, 3 can each be implemented by a vector load with-
out additional data movement. This example is now fully vectorized
because all Vec expressions contain simple memory lookups and
no scalar computations expressions remain.

Diospyros’s code generation backend (Section 4) produces DSP
code from this vectorized program by emitting C intrinsics resem-
bling this pseudocode:

vecreg a_0_2 = load(a, 0, 2);

// ...

vecreg b_2_4 = load(b, 2, 2);

vecreg add_1 = vec_add(a_0_2, b_0_2);

vecreg add_2 = vec_add(a_2_3, b_2_4);

store(out, add_1, 0, 2);

store(out, add_2, 2, 2);

While this simple example has perfectly aligned vector accesses,
most realistic code requires nontrivial data movement to fill the vec-
tor registers. Diospyros’s backend consumes these Vec expressions
to produce actual loads and data movement instructions based on
the high-level strategy found by the rewrite engine. During code
generation, the backend selects vector shuffle code to implement
each given Vec expression. Similarly, real code mixes both vector
and scalar computation; Diospyros generates a mixture of both.

3.3 Searching for Rewrites
In general, applying the rewrite rules directly (like a traditional
compiler) does not promise optimality—we must be sure to ap-
ply the right rules in the right order to find the optimal program
(with respect to our rule set). This section describes how Diospyros
searches the space of all rewrite rule applications by representing
the lifted program as an equality graph (E-graph) [23] and using
equality saturation [36] for efficient search.

Equality saturation. An E-graph is a data structure for efficiently
representing a large set of terms and equivalences between them.
The nodes of an E-graph are function symbols or terminals, and
subgraphs represent terms. Each node is associated with an equiva-
lence class, and the E-graph guarantees that two nodes are in the
same equivalence class if and only if the program terms rooted
at them are equivalent. When used for program optimization, the
equivalence relation is program equivalence.

Initially, the E-graph represents only one program and its sub-
terms (the input program in the abstract DSL). Equality saturation
then applies rewrite rules (program transformations) to the E-graph,
which introduces new nodes into the graph and annotates them

VecAdd

VecMulv1

v2 v3

(a) Before rewriting

VecAdd

VecMulv1

v2 v3

VecMAC

(b) After rewriting

Figure 4: AnE-graph before and after applying a rewrite rule
for fused multiply–accumulate. Solid boxes are nodes and
represent program terms. Dashed boxes represent equiv-
alence classes. After rewriting, the VecAdd and VecMAC
terms are in the same equivalence class.

with the appropriate equivalence classes to maintain congruence.
For example, this is a rewrite rule for fused multiply–accumulate:

(VecAdd a (VecMul b c))" (VecMAC a b c)

Figure 4 illustrates the application of this rewrite rule to an E-graph
which initially represents the program (VecAdd v1 (VecMul v2 v3)).
Applying the rule introduces a new VecMAC node into the graph,
with the variables v1, v2, and v3 as children, and adds the new node
to the equivalence class of the existing VecAdd node.

Equality saturation iteratively applies all rewrite rules (possi-
bly multiple times), terminating when no potential rewrite rule
application would change the graph—the graph has saturated—or a
timeout is reached. At this point (unless the timeout is reached), the
saturated E-graph represents all programs that could be produced
by applying the rewrite rules in any order. This property allows us
to avoid the phase ordering problem common to compilers.

We use the egg [40] library for E-graphs and equality saturation.
In egg, a rewrite rule comprises two parts: a searcher that looks for
nodes that can be rewritten, and an applier that applies a rewrite.
egg exposes a pattern DSL to specify simple syntactic rewrites and
a Rust API to implement custom searchers and appliers with more
complex logic than simple pattern matching.

Custom matching for vectorization. Simple unary scalar opera-
tions can be vectorized using rules of the form shown in Section 3.2.
However, DSP kernels often do not fit exactly within the target
architecture’s vector lanes (for example, a 3 × 3 matrix multiply
on an architecture with vector width 4). To vectorize operations
while maximizing hardware utilization, Diospyros provides rewrite
rules that work even when some lanes of a vector computation are
empty. For example, the following concrete rewrite is sound and
enables vectorizing an addition with irregular shape:

(Vec (+ a b) 0 (+ c d) 0)! (VecAdd (Vec a 0 c 0) (Vec b 0 d 0))

To avoid specifying every permutation of zeros on the left-hand
side of this rule, and repeating this specification for each binary
operation, Diospyros uses egg’s support for custom rewrite rules
that go beyond pattern matching. The custom rule first matches
on the outer vector and then identifies whether each lane matches
either the operator pattern (⟨op⟩ x y) or chosen concrete values
(in this case, a constant zero). Using these custom rules makes it
easier to extend Diospyros with DSP-specific instructions without
developing a comprehensive new rewrite rule family.

878

Diospyros: DSP compilation [ASPLOS’21]

A PREPRINT - DECEMBER 24, 2020

name type syntax

LA

mmult MM,L ⇥ML,N ! MM,N AB or MxM
elemmult MM,N ⇥MM,N ! MM,N A ⇤B
elemplus MM,N ⇥MM,N ! MM,N A+B

rowagg MM,N ! MM,1 sumrowA

colagg MM,N ! M1,N sumcolA

agg MM,N ! M1,1 sumA

transpose MM,N ! MN,M A
T

co
nv

. bind MM,N ⇥ [i, j] ! Ri:M,j:N [i,j]A

unbind Ri:M,j:N ⇥ [i, j] ! MM,N [�i,�j]A

R
A join RS1 ⇥RS2 ! RS1[S2 A ⇤B

union RS1 ⇥RS2 ! RS1[S2 A+B

agg RS ⇥ U ! RS\U
P

U A

Table 1: LA and RA Operators. The type MM,N is a matrix of size M ⇥N ; [i, j] is a list of attribute names; Ri:M,j:N

is a relation with attributes i of size M and j of size N ; S1, S2, S, and U are sets of attributes.

1. A ⇤ (B + C) = A ⇤B +A ⇤ C
2.

P
i(A+B) =

P
i A+

P
i B

3. If i 62 A, A ⇤
P

i B =
P

i(A ⇤B) (else rename i)
4.

P
i

P
j A =

P
i,j A

5. If i 62 Attr(A), then
P

i A = A ⇤ dim(i)

6. A+ (B + C) = +(A,B,C) (assoc. & comm.)
7. A ⇤ (B ⇤ C) = ⇤(A,B,C) (assoc. & comm.)

Figure 3: RA equality rules REQ. ⇤ means natural join and + means union.

while selection can be encoded by multiplication with relations with 0/1 entries. We call an expression using these
three RA operators an RPlan, for Relational Plan, and use the terms RPlan and RA/relational algebra interchangeably.
Finally, there are two operators, bind and unbind for converting between matrices/vectors and K-relations.

The translation from LA to RA is achieved by a set of rules, denoted RLR, and shown in Figure 2. The bind operator
[i,j] converts a matrix to a relation by giving attributes i, j to its two dimensions; the unbind operator [�i,�j] converts
a relation back to a matrix. For example, [�j,�i] [i,j]A binds A’s row indices to i and its column indices to j, then
unbinds them in the opposite order, thereby transposing A.

SPORES translates a complex LA expression into RA by first applying the rules RLR in Figure 2 to each LA op-
erator, replacing it with an RA operator, preceded by bind and followed by unbind. Next, it eliminates consecutive
unbind/bind operators, possibly renaming attributes, e.g. [k,l] [�i,�j]A becomes A[i ! k, j ! l], which indicates that
the attributes i and j in A’s schema should be renamed to k and l, by propagating the rename downward into A. As a
result, the entire LA expression becomes an RA expression (RPlan), with bind operators on the leaves, and unbind at
the top. For an illustration, the left DAG in Figure 6 shows the expression sum((X �UV

T)2) translated to relational
algebra.

Figure 4: Venn diagram of LA and/or RA expressions. Each of the two white islands represent LA expressions that
can be proven equivalent using identities in LA; there is no way to move from one island to the other by using LA
identities. The large gray box shows the set of expressions that can be proven equivalent by using RA identities. This
allows us to connect the two islands.

4

SPORES: linear algebra
optimization for ML [VLDB’20]

A Radical Ground-up Approach?

10

Transformation
Space

Search
Method

Objective
Function

Current
Approach

Phase ordered
 transforms (mostly local)

Differentiable
Approach?

Formal, compact encoding
of equivalent transforms

Parallelized global
optimalization

Realistic, non-linear
cost models

Heuristics running on
CPUs (mostly 1 thread)

Hand-crafted cost models
(mostly linear costs)

×

+

b 2 a

<<

1

Global
minimum

Local
minimum

Gradient DescentMeta IR Learnable Cost

Compiler / Synthesis
Optimization

11

The E-Graph Extraction Problem

ni
uin4n1 n2 n3

n0
2

4 2

n5

2

3

4

E-node ni with
cost ui is selected

● Root e-class (n0) must be selected
● Exactly one e-node per chosen e-class must be selected
● All child e-classes of a chosen e-node must be selected
● No cycles after extraction

NP-hard in general, even on acyclic e-graphs

n4n1 n2 n3

n0
2

4 2

n5

2

3

4 extraction

Constraints:

Goal: Extract the lowest-cost legal subgraph based on a given cost function

Existing Extraction Methods
● A popular heuristic

○ A fast, iterative (greedy-ish) algorithm that selects e-nodes with min costs
○ Only supports linear cost functions (i.e., weighted sum of individual node costs)
○ Suboptimal

12

n4n1 n2 n3

n0
2

4 2

n5

2

3

4 n4n1 n2 n3

n0
2

4 2

n5

2

3

4

Heuristic extraction cost: 2 + 4 + 4 = 10 Optimal extraction cost: 2 + 2 + 2 + 3 = 9

u3 + u5 = 5 > u4 = 4
n4 greedily picked

Our Approach: SmoothE

13

▸ A fully differentiable approach to
e-graph extraction

▸ Continuous global optimization
that supports (learnable)
nonlinear cost

▸ GPU-accelerated and compatible
with modern ML frameworks

SmoothE: Di�erentiable E-Graph Extraction
Yaohui Cai

yc2632@cornell.edu
Cornell University

Ithaca, New York, USA

Kaixin Yang
ky427@cornell.edu
Cornell University

Ithaca, New York, USA

Chenhui Deng
cd574@cornell.edu
Cornell University

Ithaca, New York, USA

Cunxi Yu
cunxiyu@umd.edu

University of Maryland, College Park
College Park, Maryland, USA

Zhiru Zhang
zhiruz@cornell.edu
Cornell University

Ithaca, New York, USA

Abstract
E-graphs have gained increasing popularity in compiler op-
timization, program synthesis, and theorem proving tasks.
They enable compact representation of many equivalent ex-
pressions and facilitate transformations via rewrite rules
without phase ordering limitations. A major bene�t of using
e-graphs is the ability to explore a large space of equiva-
lent expressions, allowing the extraction of an expression
that best meets certain optimization objectives (or cost mod-
els). However, current e-graph extraction methods often face
unfavorable scalability-quality trade-o�s and only support
simple linear cost functions, limiting their applicability to
more realistic optimization problems.

In this work, we propose SmoothE, a di�erentiable e-graph
extraction algorithm designed to handle complex cost mod-
els and optimized for GPU acceleration. More speci�cally, we
approach the e-graph extraction problem from a probabilis-
tic perspective, where the original discrete optimization is
relaxed to a continuous di�erentiable form. This formulation
supports any di�erentiable cost functions and enables e�-
cient searching for solutions using gradient descent. We im-
plement SmoothE in PyTorch to leverage the advancements
of the modern machine learning ecosystem. Additionally, we
introduce performance optimization techniques to exploit
sparsity and data parallelism. We evaluate SmoothE on a
variety of realistic e-graphs from �ve di�erent applications
using three distinct cost models, including both linear and
non-linear ones. Our experiments demonstrate that SmoothE
consistently achieves a favorable trade-o� between scalabil-
ity and solution quality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0698-1/25/03
h�ps://doi.org/10.1145/3669940.3707262

CCS Concepts: • Computingmethodologies!Machine
learning; • Software and its engineering ! Compilers;
General programming languages.

Keywords: Machine learning for systems; Compilers; Pro-
gramming languages; Equivalence graph

ACM Reference Format:
Yaohui Cai, Kaixin Yang, Chenhui Deng, Cunxi Yu, and Zhiru Zhang.
2025. SmoothE: Di�erentiable E-Graph Extraction. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York,
NY, USA, 15 pages. h�ps://doi.org/10.1145/3669940.3707262

1 Introduction
Term rewriting [17], widely employed in compiler optimiza-
tions [8, 34, 44] and theorem proving [15, 18], transforms pro-
grams into functionally equivalent but more e�cient forms.
Traditional methods apply the rewrites sequentially in a
predetermined order, signi�cantly a�ecting performance—a
challenge known as the phase ordering problem [44, 50].
Equality saturation addresses the phase ordering issue

by using the equivalence graph (e-graph), a data structure
that compactly represents a set of expressions (i.e., e-nodes)
and their equivalence relations (i.e., e-classes) [6, 33]. The
rewrite rules are applied collectively, encoding all function-
ally equivalent solutions on a single e-graph. This enables
the selection of the most cost-e�cient (or performant) one
during the e-graph extraction process. With the emergence of
state-of-the-art open-source equality saturation tools such as
egg [50] and egglog [56], e-graph has been successfully used
for tensor graph transformation [53], sparse linear algebra
optimization [49], code optimization [29, 41], digital signal
processor (DSP) compilation [45, 48], circuit datapath syn-
thesis [10, 12–14, 47], and �oating-point arithmetic [11, 35].

Extracting a high-quality solution from an e-graph is chal-
lenging due to theoretical complexity (proven to be NP-
hard [42, 55] in general) and practical e�ciency, particu-
larly given the typically large graph size. While a number of
exact and heuristic e-graph extraction methods have been

1020

ASPLOS’25 Best Paper Award

14

SmoothE in a Nutshell: Differentiable E-Graph Extraction

GPU

n4n1 n2 n3

n0
2

4 2

n5

2

3

4n4n1 n2 n3

n0
2

4 2

n5

2

3

4 SmoothE
(in PyTorch)

n4n1 n2 n3

n0
2

4 2

n5

2

3

4

pi = !(ni is selected)∈ [0, 1]
Sampling

minimizeθ cost(p) + λ Tr(eA)
where cp = softmax(θ)
 p = LBP(cp) learnable params

Loopy belief propagation (LBP) for
completeness constraints

Acyclicity penalty

15

Some SmoothE Results on a Logic Synthesis Task

Benchmarks
Extraction Cost Improvement

over baselineBaseline+ ILP SmoothE

Adder 313 255 265 15.3%
Barrel Shifter 1395 1201* 1238 11.3%

Divisor 31308 27280* 24260 22.5%
Log2 14078 13098* 9881 29.8%

Multiplier 9911 11645* 7197 27.4%
Sine 2417 1913* 1841 23.8%

Square-Root 11752 12592* 7140 39.2%

+: a popular iterative heuristic method for e-graph extraction
* ILP timed out after 6 hours

A Radical Ground-up Approach?

16

Transformation
Space

Search
Method

Objective
Function

Current
Approach

Phase ordered
 transforms (mostly local)

Differentiable
Approach?

Formal, compact encoding
of equivalent transforms

Parallelized global
optimalization

Realistic, non-linear
cost models

Heuristics running on
CPUs (mostly 1 thread)

Hand-crafted cost models
(mostly linear costs)

×

+

b 2 a

<<

1

Global
minimum

Local
minimum

Gradient DescentMeta IR Learnable Cost

Compiler / Synthesis
Optimization

17

Learnable Cost Models using GNNs
QoR

Estimation Publication

Post-HLS
Resource &

Latency

GNN4HLS
[Ferretti et al.
TODAES’22]

Post-HLS
Resource &

Latency

GNN-DSE
[Sohrabizadeh et al.

DAC’22]
Post-PnR

Resource &
Timing

IronMan
[Wu et al. GLSVLSI’21]

Post-PnR
Resource &

Timing

−
[Wu et al. DAC’22]

Post-PnR
Resource &

Timing
IronMan-Pro

[Wu et al. TCAD’23]

Post-PnR
Power

PowerGear
[Lin et al. DATE’22]

Post-PnR
Power

HL-Pow
[Lin et al. TCAD’23]

I���M��: GNN-assisted Design Space Exploration in High-Level
Synthesis via Reinforcement Learning

Nan Wu
nanwu@ucsb.edu
UC Santa Barbara

Santa Barbara, CA, USA

Yuan Xie
yuanxie@ucsb.edu
UC Santa Barbara

Santa Barbara, CA, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

ABSTRACT
Despite the great success of High-Level Synthesis (HLS) tools, we
observe several unresolved challenges: 1) the high-level abstraction
of programming styles in HLS conceals optimization opportuni-
ties; 2) existing HLS tools do not provide �exible trade-o�s among
di�erent objectives and constraints; 3) the actual quality of the
resulting RTL designs is hard to predict. To this end, we propose an
end-to-end framework, I���M��. The primary goal is to enable a
�exible and automated design space exploration (DSE), which can
provide either optimized solutions under user-speci�ed constraints,
or Pareto trade-o�s among di�erent objectives (e.g., resource types,
area, and latency). I���M�� consists of three components: GPP
(a highly accurate graph-neural-network-based performance pre-
dictor), RLMD (a reinforcement-learning-based DSE engine that
explores the optimized resource allocation strategy), and CT (a
code transformer that assists RLMD and GPP by extracting data
�ow graphs from original HLS C/C++). Experimental results show
that, 1) GPP achieves high prediction accuracy, reducing prediction
errors of HLS tools by 10.9⇥ in resource usage and 5.7⇥ in tim-
ing; 2) RLMD obtains optimized or Pareto solutions outperforming
genetic algorithm and simulated annealing by 12.7% and 12.9%,
respectively; 3) I���M�� can �nd optimized solutions perfectly
matching various DSP constraints, with 2.54⇥ fewer DSPs and up
to 6⇥ shorter latency than those of HLS tools. I���M�� is also up
to 400⇥ faster than meta-heuristic techniques and HLS tools.

CCS CONCEPTS
• Hardware! Electronic design automation.

KEYWORDS
High-Level Synthesis; GraphNeural Network; Reinforcement Learn-
ing; Design Space Exploration
ACM Reference Format:
Nan Wu, Yuan Xie, and Cong Hao. 2021. I���M��: GNN-assisted Design
Space Exploration in High-Level Synthesis via Reinforcement Learning.
In Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI ’21),
June 22–25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3453688.3461495

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461495

1 INTRODUCTION
High-Level Synthesis (HLS) bene�ts ASIC and FPGA design automa-
tion by enabling automated transformation from behavioral descrip-
tions in high-level languages (C/C++, etc.) to RTL-level designs.
In addition to widely used commercial HLS tools for FPGA [18]
and ASIC [1], recent e�orts focus on improving RTL design qual-
ity [2, 22], performance and resource prediction [8, 19, 20], design
space exploration (DSE) [12], etc.

Despite great achievement shown by previous e�orts, there are
several crucial challenges unaddressed. 1) Higher level abstrac-
tions in HLS can obstruct optimization opportunities. The
structured HLS coding style, such as loops and function calls, hin-
ders advanced or �ned-grained performance and resource optimiza-
tion. Meanwhile, the irregular logic, cascaded and imperfect loops
in HLS programs usually require manual or complicated code trans-
formations to improve hardware implementation performance [7].
Table 1 demonstrates a simple multiplication-accumulation func-
tion using a for-loop. To explore trade-o�s between the DSP usage
and the number of clock cycles (latency), typical ways are to use
unroll pragmas or manual loop-tiling, as line 1-4. However, when
the loop boundary (e.g., 8) is not divisible by the DSP constraint (e.g.,
3), it results in a partial unrolling as line 4, introducing undesired
latency increment (from 4 to 8) and worsening the critical path (CP)
timing (from 5ns to 7.4ns). The nested loops further complicate this
problem (imagine a 5-layer nested loop with a DSP constraint of 17).
Motivated by the necessity of better performance and more �exible
optimization choices, we propose a code transformer (CT). CT
easily allows to use directives, such as allocation and resource prag-
mas, to conduct �ner-grained DSEs for resource and performance,
as line 7-11 in Table 1.

2) HLS tools do not always provide the best solution, nor
automatically provide trade-o�s (Pareto solutions). Existing
DSE approaches as well as commercial HLS tools do not provide
�exible trade-o�s among di�erent objectives and constraints (e.g.,
di�erent types of resources), and they usually sacri�ce design la-
tency for less resource, or vise versa [12]. In contrast, one potential
alternative is to trade one type of resource for another (e.g., LUT and
DSP in FPGA) while maintaining the latency, which is unexplored
and only can be done through tedious manual e�orts. An example
shown in Fig. 2 explores �ne-grained trade-o�s between LUTs and
DSPs: �rst, the HLS default solution is not on the Pareto frontier;
second, there is a large design space for �nding the Pareto solutions,
and thus the DSE for Pareto solutions is non-trivial. Notably,
the solution space grows exponentially even for a binary selection
of DSP/LUT for each multiplication, which is further complicated
by di�erent data precisions (bitwidth). Motivated by the necessity

ar
X

iv
:2

10
2.

08
13

8v
2

 [c
s.

A
R

]
8

D
ec

 2
02

1

High-Level Synthesis Performance Prediction using
GNNs: Benchmarking, Modeling, and Advancing

Nan Wu
nanwu@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Hang Yang
innallyyang@hotmail.com

Nankai University
Tianjin, China

Yuan Xie
yuanxie@ucsb.edu

University of California, Santa Barbara
Santa Barbara, CA, USA

Pan Li
panli@purdue.edu
Purdue University

West Lafayette, IN, USA

Cong Hao
callie.hao@ece.gatech.edu

Georgia Institute of Technology
Atlanta, GA, USA

Abstract
Agile hardware development requires fast and accurate cir-
cuit quality evaluation from early design stages. Existing
work of high-level synthesis (HLS) performance prediction
usually needs extensive feature engineering after the syn-
thesis process. To expedite circuit evaluation from as earlier
design stage as possible, we propose a rapid and accurate
performance modeling, exploiting the representation power
of graph neural networks (GNNs) by representing C/C++
programs as graphs. The contribution of this work is three-
fold. First, we build a standard benchmark containing 40k C
synthesizable programs, which includes both synthetic pro-
grams and three sets of real-world HLS benchmarks. Each
program is implemented on FPGA to generate ground-truth
performancemetrics. Second, we formally formulate the HLS
performance prediction problem on graphs, and proposemul-
tiple modeling strategies with GNNs that leverage di�erent
trade-o�s between prediction timeliness (early/late predic-
tion) and accuracy. Third, we further propose a novel hierar-
chical GNN that does not sacri�ce timeliness but largely im-
proves prediction accuracy, signi�cantly outperforming HLS
tools. We apply extensive evaluations for both synthetic and
unseen real-case programs; our proposed predictor largely
outperforms HLS by up to 40⇥ and excels existing predictors
by 2⇥ to 5⇥ in terms of resource usage and timing prediction.

1 Introduction
One essential requirement for agile hardware development
is to evaluate circuit design quality quickly and accurately
for rapid optimization iterations. Traditional EDA tools usu-
ally take hours to days to accurately evaluate circuit quality
with extensive manual e�orts. Although high-level synthesis
(HLS) tools can greatly speed up circuit design, they still need
minutes to hours for design synthesis, and can be largely
inaccurate in terms of circuit quality evaluation [28]. Given
the strong need for hardware agile development and produc-
tivity boost, a quick and accurate performance evaluation at
earliest stage, even before HLS, is highly expected.

Figure 1. The overall performance prediction �ow. (a) De-
sign �ow starting from behavioral programs to hardware
circuits. (b) An example program written in C. (c) The in-
termediate representation (IR) graph extracted by compiler
front-ends. (d) The working �ow of GNNs, predicting actual
resource usage and timing merely based on raw IR graphs.

Prior work has investigated circuit performance evalu-
ation before or after HLS, to predict synthesized or imple-
mented design metrics such as resource usage, timing, power,
and area. Analytical models are classic approaches [19, 32,
33] but they only work for highly regular data�ow such as
perfect loops and arrays. RecentML approaches have become
promising in estimating the actual design performance [29].
Pyramid [15] assembled multiple ML models for resource
and timing prediction. Both HLSPredict [18] and XPPE [16]
are ANN-based cross-platform performance predictors that
estimate the HLS design performance on FPGAs.

Despite the great success, most of the ML-based methods
rely on intensive and empirical feature engineering: a large
number of features must be obtained from HLS synthesis re-
port or the intermediate results of a partially executed imple-
mentation process, which is still time-consuming. Therefore,

ar
X

iv
:2

20
1.

06
84

8v
1

 [c
s.

LG
]

18
 J

an
 2

02
2

900 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 3, MARCH 2023

IRONMAN-PRO: Multiobjective Design Space
Exploration in HLS via Reinforcement Learning

and Graph Neural Network-Based Modeling
Nan Wu , Student Member, IEEE, Yuan Xie , Fellow, IEEE, and Cong Hao

Abstract—Despite the great success of high-level synthesis
(HLS) tools, we observe several unresolved challenges: 1) the
high-level abstraction of HLS programming styles sometimes con-
ceals optimization opportunities; 2) the actual quality of resulting
RTL designs is hard to predict; and 3) existing HLS tools do
not provide flexible tradeoff (Pareto) solutions among different
objectives and constraints. To this end, we propose an end-
to-end framework, namely, IRONMAN-PRO. The primary goal
is to enable a flexible and automated design space exploration
(DSE), to provide either optimized solutions under user-specified
constraints or Pareto tradeoffs among different objectives (such
as resource types, area, and latency). IRONMAN-PRO consists
of three components: 1) GPP, a highly accurate graph-neural-
network-based performance and resource predictor; 2) RLMD,
a reinforcement-learning-based multiobjective design exploration
engine for optimal resource allocation strategies, aiming to pro-
vide Pareto solutions among different objectives; and 3) CT,
a code transformer to assist RLMD and GPP, which extracts
the data flow graphs from original HLS C/C++ and automati-
cally generates synthesizable code with optimized HLS directives.
Experimental results show that, 1) GPP achieves high prediction
accuracy, reducing the prediction errors of HLS tools by 10.9×
in resource utilization and 5.7× in critical path (CP) timing;
2) compared with meta-heuristic-based techniques, IRONMAN-
PRO generates superior solutions improving resource utilization
by 16.0% ∼ 29.5% and CP timing by 7.6%–16.5%; and 3) under
user-specified constraints, IRONMAN-PRO can find satisfying
solutions over 96% of the cases, more than twice as many as that
of meta-heuristic-based techniques and with a speedup of up to
400×. This work demonstrates the great potential of applying
machine learning algorithms in the electronic design automation
domain, especially for the hard-to-solve problems, such as tim-
ing estimation and optimization. IRONMAN-PRO is available at
https://github.com/lydiawunan/IronMan.

Index Terms—Design space exploration (DSE), graph neu-
ral network (GNN), high-level synthesis (HLS), reinforcement
learning (RL).

Manuscript received 23 August 2021; revised 12 December 2021, 4
March 2022, and 28 April 2022; accepted 26 May 2022. Date of publica-
tion 22 June 2022; date of current version 20 February 2023. This article
was recommended by Associate Editor P. Coussy. (Corresponding author:
Nan Wu.)

Nan Wu and Yuan Xie are with the Department of Electrical and Computer
Engineering, University of California at Santa Barbara, Santa Barbara,
CA 93106 USA (e-mail: nanwu@ucsb.edu; yuanxie@ucsb.edu).

Cong Hao is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
callie.hao@ece.gatech.edu).

Digital Object Identifier 10.1109/TCAD.2022.3185540

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) is a prevailing tech-
nology to develop ASIC and FPGA designs, which

expedites the design flow by automatic transformation from
behavioral descriptions in high-level languages (C/C++, etc.)
to functionally equivalent RTL designs that have different
resource/performance tradeoffs. Despite the great success of
HLS tools, we observe several unresolved challenges as
follows.

Challenge 1 (Concealed Optimization Opportunities): The
high-level abstraction of HLS programming styles, such
as loops and function calls, conceals further optimization
opportunities. While guidelines of HLS code optimization
toward different design objectives are well investigated [8],
they often focus on coarse-grained optimization in the
loop/array/function-level and manual efforts for fine-
grained exploration (such as in the operator-level) are still
required.

Challenge 2 (Hard-to-Predict Quality of Resulting RTL
Designs): The quality of RTL designs generated by HLS tools
is hard to predict. As shown in Fig. 1, the actual resource usage
and timing of RTL designs can only be obtained after imple-
mentation, which is extremely time consuming (up to hours
or days). Even though HLS tools provide synthesis reports
with resource estimations, they are far from accurate [9]–[11].
To predict the actual RTL performance quickly and accu-
rately, some existing studies adopt model-based predictors,
which are more suitable for well-structured data flows but do
not work well for irregular logics. Other approaches apply
machine learning (ML) techniques for predictions [6], [9],
which often require extensive feature extraction after design
synthesis and/or implementation.

Challenge 3 (Inflexible Design Exploration Among Different
Objectives): With the increasing variety of workloads and
the diverse performance, resource, and power targets, HLS
designs typically require extensive DSE to satisfy design spec-
ifications. Existing DSE approaches in HLS usually sacrifice
design latency for less resource or vice versa [7], leaving
the flexible tradeoffs among other objectives and constraints
unexplored. One unplumbed yet promising design exploration
knob is to trade one type of resource for another (e.g., LUT
and DSP in FPGA) while maintaining the latency unchanged,
which only can be done with tedious manual efforts (detailed
examples in Section II).

1937-4151 c⃝ 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on September 15,2023 at 20:02:17 UTC from IEEE Xplore. Restrictions apply.

Automated Accelerator Optimization Aided by Graph Neural
Networks

Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong
Computer Science Department, University of California - Los Angeles, USA

Los Angeles, CA, USA
{atefehsz,yba,yzsun,cong}@cs.ucla.edu

Abstract
Using High-Level Synthesis (HLS), the hardware designers must
describe only a high-level behavioral �ow of the design. However,
it still can take weeks to develop a high-performance architecture
mainly because there are many design choices at a higher level
to explore. Besides, it takes several minutes to hours to evaluate
the design with the HLS tool. To solve this problem, we model
the HLS tool with a graph neural network that is trained to be
used for a wide range of applications. The experimental results
demonstrate that our model can estimate the quality of design in
milliseconds with high accuracy, resulting in up to 79⇥ speedup
(with an average of 48⇥) for optimizing the design compared to the
previous state-of-the-art work relying on the HLS tool.

ACM Reference Format:
Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2022.
Automated Accelerator Optimization Aided by Graph Neural Networks.
In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC)
(DAC ’22), July 10–14, 2022, San Francisco, CA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3489517.3530409

1 Introduction
High-Level Synthesis (HLS) was introduced to simplify the FPGA
programming by raising the abstraction level in design and soon
was embraced by both academia and industry [4, 16]. This is be-
cause the HLS tools let the designers optimize their microarchitec-
ture quickly by inserting a few synthesis directives in the form of
pragmas. This feature can potentially help shorten the design devel-
opment cycle. However, not every HLS design has a good quality of
results [17]. Thus, one often has to explore many design choices for
each new application since the solution space grows exponentially
by the number of candidate pragmas. This can negatively impact
the design turn-around times.

To speed up the design optimization, a new line of research has
been created with the focus on automating the design space explo-
ration (DSE) for optimizing the microarchitecture. As summarized
in [14], the previous studies either use the HLS tool directly [17, 24],
or develop a model to mimic the HLS tool [11, 26] for evaluating
a design point. Relying on the HLS tool to evaluate a solution can
increase the DSE time signi�cantly as each design candidate would
have a long evaluation time (minutes to hours) that forces us to
explore a reduced set of the solution space. While utilizing a model
can potentially speed up the process, a simple analytical model can-
not capture the di�erent heuristics used by the tool [14]. Adopting a
learning algorithm can help with increasing the accuracy. However,
the related works build a separate learning model per application
and the results from one application are not transferred to another
one. A nice e�ort was made in Kwon et al. [7] for transfer learn-
ing using a Multi-Layer Perceptron (MLP) network. Nonetheless,
they only use the pragma con�gurations as the input to the model,
which can result in considerable loss since the program semantics
are missing (see Section 5.2).

A few of the very recent works have proposed to use Graph
Neural Network (GNN) for predicting the design’s quality [18, 21].

Ustun et al. [18] proposes a GNN-based model to learn the oper-
ation mapping to FPGA’s resources for delay prediction in HLS.
IronMan [21] uses GNN to predict the performance of the program
under di�erent resource allocations (DSP or LUT) to the computa-
tion nodes. Although their studies clearly demonstrate the value
and power of using GNNs, none of these works include the pragmas
in their input representation so their models cannot be used for
�nding the best design con�guration.

In this paper, we aim to automate the design optimization using
GNN with the support for model generalization by developing a
framework called GNN-DSE. We �rst build a model to evaluate a
design quickly, in milliseconds, without the invocation of the HLS
tool. Since the HLS tools employ many heuristics to optimize a
design and the design parameters a�ect each other, we let a deep
learning model learn their impact. Furthermore, as the current
HLS tools optimize the design based on speci�c code patterns,
it is important to identify the di�erent code patterns and learn
their e�ect to be able to transfer the knowledge we gained from
one application to another. As such, we represent the program as
a graph which includes the program information in the form of
control, data, call, and pragma �ows and exploit a GNN to extract
the required features of the graph for predicting the objectives.
We propose several techniques for improving the accuracy of the
model including Jumping Knowledge Network (JKN) [23], node
attention [9], and multi-head objective prediction. To demonstrate
the e�ectiveness of our model, we build a DSE on top of it to
�nd the Pareto-optimal design points. We show that not only can
GNN-DSE �nd the Pareto-optimal design points for the kernels that
were included in its training set, it can also generalize to the kernels
outside of its database and detect their Pareto-optimal design points.
This paper is the �rst work to employ a graph representation that
captures both the program semantics and the pragmas, and to build
a single predictive model for several applications with transferring
learning capability. In this paper, we target Xilinx FPGAs as an
example but our approach is tool-independent and extendable to
Intel FPGAs as well.

In summary, this paper makes the following contributions:
• We propose a graph-based program representation for optimiz-
ing FPGA designs which includes both the program context and
the pragma �ow.

• We develop a learning model based on Graph Neural Network
(GNN) as a surrogate of the HLS tool for assessing a design
point’s quality in milliseconds and propose several techniques
for improving its accuracy.

• We build an automated framework, GNN-DSE1, to gather a data-
base of FPGA designs, train a learning model for predicting the
design’s objectives, and run a design space exploration based on
the model to close-in on a high-performance design point.

• The experimental results demonstrate that not only can
GNN-DSE �nd the Pareto-optimal design points for the ker-
nels in its database, but can also optimize the unseen kernels by
generalizing the knowledge it learned from its training set.

1The codes are open-sourced at https://github.com/UCLA-VAST/GNN-DSE

“We developed a novel GNN model to predict
the properties of tensor computation graphs,
enabling estimation of performance for ML
programs.”

Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level
Optimizations

tensor
computation

graph kernels /
subgraphs

hardware
instructions

loop tiling / ordering
/ unrolling, overlapping

data-transfer &
compute*, parllelization*,

vecterization*,
2D register mapping*

Kernel-Level
HW Lowering

Figure 2: Important optimizations in ML compilers include graph-level and kernel-level optimizations.
A graph-level optimization requires the context of the entire graph to make optimal decisions and
transforms the entire graph accordingly. A kernel-level optimization transforms each kernel (a fused
subgraph) at a time, independently of other kernels.

amount of resources to find quality candidates compared to traditional heuristics-based compilers.
Therefore, many methods develop a learned cost model to accelerate autotuning [14, 41, 65, 79, 45, 3].

2.1 XLA and Autotuner

XLA [70] is a production-grade heuristics-based compiler for ML programs, capable of generating
code for various hardware targets, including CPUs, GPUs, and notably TPUs [38, 39]. Figure 2
depicts important optimizations that are featured in XLA and most ML compilers. Graph-level
optimizations require the context of the entire program graph to make good decisions, while kernel-
level optimizations can be done independently within each kernel. A tensor computation graph is
represented as High Level Operations (HLO) in XLA. Each optimization pass transforms an HLO
graph into a functionally-equivalent one. The output of graph-level optimizations are a collection
of kernels (represented as fused subgraphs). XLA has an accompanying autotuner [56] that can
tune both graph-level and kernel-level configurations for TPUs, unlike most search-based compilers
[13, 14, 79, 82, 2, 3, 71, 45, 3], which focus on kernel-level optimizations.

Kernel-Level Optimizations. Each node in a tensor computation graph represents a tensor opera-
tion, such as matrix multiplication, convolution, element-wise addition, etc. A kernel, represented as a
fused subgraph, is then a fusion of multiple tensor operations. For example, Convolution-BatchNorm
is a common fused kernel that appears in Convolutional Neural Networks. The most important
optimization at the kernel level is tile size selection: selecting the shape of a tile of the output tensor
to maximize compute efficiency of the hardware, while the required regions of input, output, and
intermediate data fit in the local cache or scratchpad memory. The XLA tile size autotuner has been
deployed in production to optimize the most heavily executed kernels on Google TPU fleet on a daily
basis, saving approximately 2% of the total TPU compute time overall [55]. The learned cost model
based on a GNN is used to select the top K most promising tile sizes to execute on real hardware
[41], reducing the autotuning search time by approximately 20x.

Graph-Level Optimizations. At the graph level, the XLA autotuner supports tuning layout assign-
ment, fusion, and memory space assignment passes, as well as compiler flags that control multiple
optimization passes. The XLA graph-level autotuner has delivered 10–20% speedup state-of-the-art
models serving substantial production traffic at Google. However, it often takes at least a few hours
for the autotuner to converge when tuning one optimization pass of a single graph, and much longer
for larger computation graphs. Therefore, a learned cost model would significantly reduce the search
time. This motivates us to release the dataset collected from the autotuning process to advance
research in developing learned performance prediction models, by addressing challenges outlined in
Section 2.2, and ultimately accelerate the autotuning process for production ML workloads.

We focus on layout tuning because it offers the most speedup in general. The layout assignment pass
chooses the physical layouts of the input and output tensors of each node that satisfy constraints,
while minimizing program’s execution time. A layout determines the order of (minor-to-major) tensor
dimensions. Figure 3 displays valid input layouts in blue and the chosen layout in red. If an edge
connects an output to an input with a different layout, the compiler inserts a copy (transpose) operator
to convert the layout. In Figure 3 (left), layout of {1, 0, 2} is assigned to the output of add but {0, 1, 2}

3

Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level
Optimizations

tensor
computation

graph kernels /
subgraphs

hardware
instructions

loop tiling / ordering
/ unrolling, overlapping

data-transfer &
compute*, parllelization*,

vecterization*,
2D register mapping*

Kernel-Level
HW Lowering

Figure 2: Important optimizations in ML compilers include graph-level and kernel-level optimizations.
A graph-level optimization requires the context of the entire graph to make optimal decisions and
transforms the entire graph accordingly. A kernel-level optimization transforms each kernel (a fused
subgraph) at a time, independently of other kernels.

amount of resources to find quality candidates compared to traditional heuristics-based compilers.
Therefore, many methods develop a learned cost model to accelerate autotuning [14, 41, 65, 79, 45, 3].

2.1 XLA and Autotuner

XLA [70] is a production-grade heuristics-based compiler for ML programs, capable of generating
code for various hardware targets, including CPUs, GPUs, and notably TPUs [38, 39]. Figure 2
depicts important optimizations that are featured in XLA and most ML compilers. Graph-level
optimizations require the context of the entire program graph to make good decisions, while kernel-
level optimizations can be done independently within each kernel. A tensor computation graph is
represented as High Level Operations (HLO) in XLA. Each optimization pass transforms an HLO
graph into a functionally-equivalent one. The output of graph-level optimizations are a collection
of kernels (represented as fused subgraphs). XLA has an accompanying autotuner [56] that can
tune both graph-level and kernel-level configurations for TPUs, unlike most search-based compilers
[13, 14, 79, 82, 2, 3, 71, 45, 3], which focus on kernel-level optimizations.

Kernel-Level Optimizations. Each node in a tensor computation graph represents a tensor opera-
tion, such as matrix multiplication, convolution, element-wise addition, etc. A kernel, represented as a
fused subgraph, is then a fusion of multiple tensor operations. For example, Convolution-BatchNorm
is a common fused kernel that appears in Convolutional Neural Networks. The most important
optimization at the kernel level is tile size selection: selecting the shape of a tile of the output tensor
to maximize compute efficiency of the hardware, while the required regions of input, output, and
intermediate data fit in the local cache or scratchpad memory. The XLA tile size autotuner has been
deployed in production to optimize the most heavily executed kernels on Google TPU fleet on a daily
basis, saving approximately 2% of the total TPU compute time overall [55]. The learned cost model
based on a GNN is used to select the top K most promising tile sizes to execute on real hardware
[41], reducing the autotuning search time by approximately 20x.

Graph-Level Optimizations. At the graph level, the XLA autotuner supports tuning layout assign-
ment, fusion, and memory space assignment passes, as well as compiler flags that control multiple
optimization passes. The XLA graph-level autotuner has delivered 10–20% speedup state-of-the-art
models serving substantial production traffic at Google. However, it often takes at least a few hours
for the autotuner to converge when tuning one optimization pass of a single graph, and much longer
for larger computation graphs. Therefore, a learned cost model would significantly reduce the search
time. This motivates us to release the dataset collected from the autotuning process to advance
research in developing learned performance prediction models, by addressing challenges outlined in
Section 2.2, and ultimately accelerate the autotuning process for production ML workloads.

We focus on layout tuning because it offers the most speedup in general. The layout assignment pass
chooses the physical layouts of the input and output tensors of each node that satisfy constraints,
while minimizing program’s execution time. A layout determines the order of (minor-to-major) tensor
dimensions. Figure 3 displays valid input layouts in blue and the chosen layout in red. If an edge
connects an output to an input with a different layout, the compiler inserts a copy (transpose) operator
to convert the layout. In Figure 3 (left), layout of {1, 0, 2} is assigned to the output of add but {0, 1, 2}

3

18

Traditional GNNs Not Ideal for Computation Graphs

Non-computation graphs
(e.g., social and citation networks)

Computation graphs
(e.g., logic networks, dataflow graphs)

Homophily property – Nearby nodes
tend to have similar attributes
(sampling may help both speed and accuracy)

Heterophily property – Nearby nodes
often represent different operations
(graph sampling breaks functionality)

Global structures also matter (if
not more)

Learning local structures is
typically sufficient

X

Y
Z

X
Z

Sampling

19

Our Recent Efforts
Published as a conference paper at ICLR 2024

POLYNORMER: POLYNOMIAL-EXPRESSIVE GRAPH
TRANSFORMER IN LINEAR TIME

Chenhui Deng, Zichao Yue, Zhiru Zhang
Cornell University, Ithaca, USA
{cd574, zy383, zhiruz}@cornell.edu

ABSTRACT

Graph transformers (GTs) have emerged as a promising architecture that is the-
oretically more expressive than message-passing graph neural networks (GNNs).
However, typical GT models have at least quadratic complexity and thus can-
not scale to large graphs. While there are several linear GTs recently proposed,
they still lag behind GNN counterparts on several popular graph datasets, which
poses a critical concern on their practical expressivity. To balance the trade-off be-
tween expressivity and scalability of GTs, we propose Polynormer, a polynomial-
expressive GT model with linear complexity. Polynormer is built upon a novel
base model that learns a high-degree polynomial on input features. To enable
the base model permutation equivariant, we integrate it with graph topology and
node features separately, resulting in local and global equivariant attention mod-
els. Consequently, Polynormer adopts a linear local-to-global attention scheme to
learn high-degree equivariant polynomials whose coefficients are controlled by at-
tention scores. Polynormer has been evaluated on 13 homophilic and heterophilic
datasets, including large graphs with millions of nodes. Our extensive experiment
results show that Polynormer outperforms state-of-the-art GNN and GT baselines
on most datasets, even without the use of nonlinear activation functions. Source
code of Polynormer is freely available at: github.com/cornell-zhang/Polynormer.

1 INTRODUCTION

As conventional graph neural networks (GNNs) are built upon the message passing scheme by ex-
changing information between adjacent nodes, they are known to suffer from over-smoothing and
over-squashing issues (Oono & Suzuki, 2020; Alon & Yahav, 2021; Di Giovanni et al., 2023), re-
sulting in their limited expressive power to (approximately) represent complex functions (Xu et al.,
2018; Oono & Suzuki, 2020). Inspired by the advancements of Transformer-based models in lan-
guage and vision domains (Vaswani et al., 2017; Dosovitskiy et al., 2021), graph transformers (GTs)
have become increasingly popular in recent years, which allow nodes to attend to all other nodes in a
graph and inherently overcome the aforementioned limitations of GNNs. In particular, Kreuzer et al.
(2021) have theoretically shown that GTs with unbounded layers are universal equivariant function
approximators on graphs. However, it is still unclear how to unlock the expressivity potential of GTs
in practice since the number of GT layers is typically restricted to a small constant.

In literature, several prior studies have attempted to enhance GT expressivity by properly involv-
ing inductive bias through positional encoding (PE) and structural encoding (SE). Specifically, Ying
et al. (2021); Chen et al. (2022a); Zhao et al. (2023); Ma et al. (2023) integrate several SE methods
with GT to incorporate critical structural information such as node centrality, shortest path dis-
tance, and graph substructures. Moreover, Kreuzer et al. (2021); Dwivedi et al. (2022); Rampasek
et al. (2022); Bo et al. (2023) introduce various PE approaches based upon Laplacian eigenpairs.
Nonetheless, these methods generally involve nontrivial overheads to compute PE/SE, and mostly
adopt the self-attention module in the vanilla Transformer model that has quadratic complexity with
respect to the number of nodes in a graph, prohibiting their applications in large-scale node classi-
fication tasks. To address the scalability challenge, many linear GTs have been recently proposed.
Concretely, Choromanski et al. (2021); Zhang et al. (2022); Shirzad et al. (2023); Kong et al. (2023)
aim to sparsify the self-attention matrix via leveraging node sampling or expander graphs, while
Wu et al. (2022; 2023) focus on kernel-based approximations on the self-attention matrix. Unfor-

1

GRAPH LEARNING AT SCALE: CHARACTERIZING AND OPTIMIZING
PRE-PROPAGATION GNNS

Zichao Yue 1 Chenhui Deng 2 * Zhiru Zhang 1

ABSTRACT
Graph neural networks (GNNs) are widely used for learning node embeddings in graphs, typically adopting a
message-passing scheme. This approach, however, leads to the neighbor explosion problem, with exponentially
growing computational and memory demands as layers increase. Graph sampling has become the predominant
method for scaling GNNs to large graphs, mitigating but not fully solving the issue. Pre-propagation GNNs (PP-
GNNs) represent a new class of models that decouple feature propagation from training through pre-processing,
addressing neighbor explosion in theory. Yet, their practical advantages and system-level optimizations remain
underexplored. This paper provides a comprehensive characterization of PP-GNNs, comparing them with graph-
sampling-based methods in training efficiency, scalability, and accuracy. While PP-GNNs achieve comparable
accuracy, we identify data loading as the key bottleneck for training efficiency and input expansion as a major
scalability challenge. To address these issues, we propose optimized data loading schemes and tailored training
methods that improve PP-GNN training throughput by an average of 15⇥ over the PP-GNN baselines, with
speedup of up to 2 orders of magnitude compared to sampling-based GNNs on large graph benchmarks. Our
implementation is publicly available at https://github.com/cornell-zhang/preprop-gnn.

1 INTRODUCTION

Message-passing-based graph neural networks (MP-GNNs)
have become a cornerstone for graph representation learning,
achieving success in various tasks like node classification
(Veličković et al., 2018; Wu et al., 2023; Kipf & Welling,
2017), link prediction (Zhang & Chen, 2018; Schütt et al.,
2017), and graph clustering (Zhang et al., 2019; Ying et al.,
2018b; Tsitsulin et al., 2023). However, scaling MP-GNNs
to large graphs remains a significant challenge.

The message-passing framework (Gilmer et al., 2017) con-
sists of two iterative steps: (1) feature aggregation and (2)
transformation. Within this framework, each node collects
feature embeddings from its neighbors and then transforms
them using a learnable function. We show the architecture of
MP-GNN models in Figure 1. The main challenge in scaling
MP-GNNs to large graphs stems from the “neighbor explo-
sion” problem (Hamilton et al., 2017), where nodes must re-
cursively collect embeddings from increasingly larger neigh-
borhoods across layers, causing the number of embeddings
to grow exponentially with each additional layer.

To address this challenge, various prior arts have introduced
sampling-based GNNs to reduce the compute and memory

1Cornell University, Ithaca, New York, USA 2NVIDIA, USA;
*Work was done at Cornell. Correspondence to: Zichao Yue
<zy383@cornell.edu>.

Proceedings of the 8 th
MLSys Conference, Santa Clara, CA, USA,

2025. Copyright 2025 by the author(s).

footprint during message passing. Those models encompass
node-wise sampling to limit neighborhood sizes per node
(Chen et al., 2017; Hamilton et al., 2017), layer-wise sam-
pling to reduce node counts per layer (Chen et al., 2018;
Zou et al., 2019), and graph-wise sampling to control over-
all subgraph size (Chiang et al., 2019; Zeng et al., 2020).
However, the sampling-based GNNs face several major lim-
itations. First, node-wise sampling methods only partially
mitigate the neighbor explosion problem, as their time com-
plexity still increases exponentially with the number of lay-
ers. More importantly, the sampling algorithms modify the
graph topology by design, which inevitably breaks the func-
tionality of computation graphs such as logic networks (Wu
et al., 2023) and dataflow graphs (Phothilimthana et al.,
2024), resulting in accuracy degradation on their down-
stream tasks (Deng et al., 2024).

To circumvent the limitations of MP-GNNs, a new class of
models known as pre-propagation GNNs (PP-GNNs) has
emerged to tackle the scalability issue from a different an-
gle (Wu et al., 2019; Frasca et al., 2020; Dong et al., 2021;
Zhang et al., 2022; Liao et al., 2022; Chen et al., 2020b;
Deng et al., 2024; Zhu & Koniusz, 2020). These models
perform feature aggregation in a preprocessing step, elim-
inating the need for this computationally expensive step
during model training. This approach theoretically offers
two advantages over MP-GNNs. First, by decoupling nodes
from interdependencies introduced by feature aggregation,
nodes are processed independently during training, effec-
tively addressing the neighbor explosion problem. Second,

MLSys’25ICLR’24
Less is More: Hop-Wise Graph A�ention for Scalable and

Generalizable Learning on Circuits
Chenhui Deng1, Zichao Yue1, Cunxi Yu2, Gokce Sarar3, Ryan Carey3, Rajeev Jain3, Zhiru Zhang1

1Cornell University, 2University of Maryland, 3Qualcomm Technologies, Inc.
{cd574,zy383,zhiruz}@cornell.edu,cunxiyu@umd.edu,{gsarar,rcarey,rajeevj}@qti.qualcomm.com

ABSTRACT
While graph neural networks (GNNs) have gained popularity for
learning circuit representations in various electronic design automa-
tion (EDA) tasks, they face challenges in scalability when applied
to large graphs and exhibit limited generalizability to new designs.
These limitations make them less practical for addressing large-
scale, complex circuit problems. In this work we propose HOGA,
a novel attention-based model for learning circuit representations
in a scalable and generalizable manner. HOGA �rst computes hop-
wise features per node prior to model training. Subsequently, the
hop-wise features are solely used to produce node representations
through a gated self-attention module, which adaptively learns
important features among di�erent hops without involving the
graph topology. As a result, HOGA is adaptive to various structures
across di�erent circuits and can be e�ciently trained in a distributed
manner. To demonstrate the e�cacy of HOGA, we consider two
representative EDA tasks: quality of results (QoR) prediction and
functional reasoning. Our experimental results indicate that (1)
HOGA reduces estimation error over conventional GNNs by 46.76%
for predicting QoR after logic synthesis; (2) HOGA improves 10.0%
reasoning accuracy over GNNs for identifying functional blocks
on unseen gate-level netlists after complex technology mapping;
(3) The training time for HOGA almost linearly decreases with an
increase in computing resources. Source code of HOGA is freely
available at: github.com/cornell-zhang/HOGA.

1 INTRODUCTION
Recent years have seen a surge of interest in machine learning
(ML) for electronic design automation (EDA), which holds great
potential in achieving faster design closure andminimizing the need
for extensive human supervision [9]. In particular, graph neural
networks (GNNs) have become increasingly popular in the EDA
community due to their ability to encode graph-structured data
such as gate-level netlists into compact representations, which can
be used for a multitude of downstream EDA applications, including
quality of results (QoR) prediction and functional reasoning [13, 18].

However, scaling GNN training to large graphs is a notoriously
challenging problem, which poses a serious concern on the prac-
tical bene�t of GNNs on large-scale EDA problems. On the one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06
https://doi.org/10.1145/3649329.3657386

Multi-Layer Perceptron

Gated Self-Attention

A

B

C
F

G

D

E

A A-1 A-2

(a) A toy graph

(b) Node-wise aggregation (prior work)

A

B

D E

C

F G

A-1
1-hop feature

2-hop feature
A-2

(c) Hop-wise aggregation (ours)

Figure 1: Comparison of HOGA and prior GNNs — (a) An
example graph for illustration; (b) GNN computation graph;
(c) Computation graph of our proposed approach, HOGA.

hand, unlike common datasets on social networks and molecular
graphs, which consist of either a few large graphs or a large num-
ber of small graphs, the circuit datasets may contain numerous
large graphs. For instance, the OpenABC-D benchmark provides
870k gate-level netlists, where each netlist consists of up to 240k
logic gates [5]. Thus, training GNNs on such a large-scale circuit
dataset is even more challenging than other graph-based applica-
tions. On the other hand, modern GNN models are built upon a
message-passing paradigm, which learns representations through
a recursive node-wise aggregation scheme shown in Figure 1(b).
As a consequence, it is nontrivial to perform e�cient distributed
GNN training due to the node dependencies in a graph structure.

Apart from the scalability challenge, it is also underexplored
how to make GNNs generalizable across di�erent circuit designs.
Although there are many customized GNNs previously proposed
for various EDA applications, their model backbones mainly follow
classic GNNs such as GCN [10] and GraphSAGE [8], which are
not necessarily suitable for circuit problems. Consider a task of
identifying functional blocks within circuits [18]. As distinct func-
tional blocks may have di�erent depths, the number of hops to be
considered varies across nodes, which cannot be easily captured by
common GNNs. Moreover, the high-order structures of functional
blocks are also important yet ignored by the aforementioned GNN
models. As a result, existing GNNs for EDA tasks often struggle
to learn the intrinsic and critical information from complex circuit
graphs, resulting in limited generalizability to unseen designs.

In literature, improving the scalability and enhancing the gener-
alizability of GNNs on circuits are largely viewed as two orthogonal
directions and seldomly explored together. Previous GNNs either
incur massive communication overhead among GPUs, or rely on
heuristic graph sampling algorithms that may lose critical structural
information [14], which in turn degrades the model generalizability.
In the context of learning generalizable GNNs for circuit problems,

DAC’24

Global structures can be
learned efficiently
Þ SoTA accuracy on both homophilic

& heterophilic graphs, including
Google TPUGraphs (ICLR’24)

Feature pre-propagation enables scalable dense GNN training by
avoiding message passing bottlenecks
Þ much improved accuracy & generalizability on computation graphs (DAC’24)
Þ 10-100x faster training than conventional message passing GNNs (MLSys’25)

20

Goal: Improve RTL datapath optimizations by combining
LLM agents with e-graph rewriting

Approach (in collab. with NVIDIA)
▸ Leverage LLM agents to propose, prove, select e-

graph rewrite rules
▸ Instead of relying on heuristic cost models, use real

PPA feedback from EDA tools to guide e-graph
extraction

Preliminary Results on a suite of open-source RTL
datapath-intensive benchmarks (to appear in MLCAD’25)

▸ Improves on average 24% in area and 12% in delay
over a commercial synthesis tool

▸ Identifies Pareto frontier of PPA trade-offs

Ongoing: Agentic E-Graph Rewriting for RTL Optimization

Rewrite rule proposal agent

Ongoing: Differentiable Optimization Beyond E-Graph Extraction

21

×
+

<

<<

+
 nand3 or2

nand

and2

nand3

inv

inv inv

nand

nand

and2

nand3

or2

oai
nand inv

or2

oai

(1) (2)

(3)

(4)

(5)

(6)

Term rewriting
(expression-, loop-level,
graph-level transforms)

Graph covering
(instruction selection,
tech mapping)

Scheduling
(+ resource allocation,
module selection)

Differentiable probabilistic optimization methods apply to a range of key
compiler/synthesis problems—more results coming soon!

Can also be paired with other metaheuristics (e.g., evolutionary search) to better
escape local minima

22

Research Question 2
To what extent can AI replace
humans in crafting optimization
algorithms for compilers?

HeuriGym: Agentic Benchmarking for LLM-Generated Heuristics

23

github.com/cornell-zhang/heurigym

ar
X

iv
:2

50
6.

07
97

2v
1

 [c
s.L

G
]

9
Ju

n
20

25
HeuriGym: An Agentic Benchmark for LLM-Crafted

Heuristics in Combinatorial Optimization

Hongzheng Chen1⇤ Yingheng Wang1⇤ Yaohui Cai1⇤ Hins Hu1⇤ Jiajie Li1⇤
Shirley Huang2 Chenhui Deng3 Rongjian Liang3 Shufeng Kong1

Haoxing Ren3 Samitha Samaranayake1 Carla P. Gomes1 Zhiru Zhang1
1 Cornell University 2 Harvard University 3 NVIDIA Corporation

{hzchen,yingheng}@cs.cornell.edu, {yc2632,zh223,jl4257}@cornell.edu

Abstract

While Large Language Models (LLMs) have demonstrated significant advance-
ments in reasoning and agent-based problem-solving, current evaluation method-
ologies fail to adequately assess their capabilities: existing benchmarks either rely
on closed-ended questions prone to saturation and memorization, or subjective
comparisons that lack consistency and rigor. In this work, we introduce HeuriGym,
an agentic framework designed for evaluating heuristic algorithms generated by
LLMs for combinatorial optimization problems, characterized by clearly defined
objectives and expansive solution spaces. HeuriGym empowers LLMs to propose
heuristics, receive evaluative feedback via code execution, and iteratively refine
their solutions. We evaluate nine state-of-the-art models on nine problems across
domains such as computer systems, logistics, and biology, exposing persistent
limitations in tool use, planning, and adaptive reasoning. To quantify performance,
we propose the Quality-Yield Index (QYI), a metric that captures both solution pass
rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro
attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source
benchmark aims to guide the development of LLMs toward more effective and
realistic problem-solving in scientific and engineering domains.

1 Introduction

Recent advancements in Large Language Models (LLMs) have significantly expanded their capa-
bilities in complex reasoning and agent-based problem-solving, enabling applications ranging from
automated code generation [25, 79, 177] to dynamic decision-making systems [126, 165]. Despite
these breakthroughs, existing evaluation frameworks struggle to rigorously assess the full spectrum of
LLMs’ emergent abilities. Traditional benchmarks increasingly fail to capture the nuanced demands
of real-world tasks that require iterative reasoning, creative algorithm design, and adaptive tool
use. This limitation creates a critical gap in understanding whether LLMs can transcend pattern
recognition and demonstrate genuine problem-solving ingenuity in real-world scenarios.

Current evaluation paradigms fall into two categories with distinct limitations. (1) Ground-truth-
based objective benchmarks rely on closed-form questions (e.g., multiple-choice mathematics
problems) that have become susceptible to rapid performance saturation. Widely used benchmarks
such as AIME [102], HumanEval [25], and GPQA Diamond [115] now exhibit ceiling effects, with
state-of-the-art models achieving over 80% accuracy [103, 141, 38]. Even emerging evaluations like
Humanity’s Last Exam (HLE) [111], initially proposed as a rigorous PhD-level test, saw performance
leap from 3% to 25% within months of release [103]. These benchmarks face a dual crisis: their
static question banks risk data contamination as models ingest newer training data, while their

⇤Core Contributor

arxiv.org/abs/2506.07972

http://github.com/cornell-zhang/heurigym
https://arxiv.org/abs/2506.07972

▸ A representative mix of 9 combinatorial optimizations problems
– Well-defined objectives
– Large solution spaces
– Scalable data instances
– Reproducible expert baselines

24

HeuriGym Benchmarks

▸ A new metric tracks the LLM’s ability to solve problems within i iterations:

 Stage I: Code compiles successfully
 Stage II: Executable produces non-empty output
 Stage III: Output is verified as a feasible solution

25

HeuriGym Evaluation (1)

Even SoTA LLMs only yield ~70% feasible solutions

26

HeuriGym Evaluation (2)

▸ SOTA LLMs achieve a QYI score
of ~0.6 (1.0 = human expert)

▸ More results available on
HeuriGym leaderboard

Quality-Yield Index (QYI)

reasoning and problem-solving abilities required in our multi-round agentic setting. Specifically, it
does not reflect whether the LLM can understand problem constraints, debug based on feedback, or
iteratively refine its solutions over multiple attempts.

To better evaluate LLMs in this complex setting, we introduce a new metric, denoted as solves@i,
which tracks the LLM’s ability to solve constrained problems within i iterations:

solves@i :=
1

N

NX

n=1

1(pass stage s in the first i-th iteration) ,

where N is the total number of test instances, and s 2 {I, II, III} indicates the specific stage of the
pipeline that the solution must pass. Each stage reflects a key milestone in agentic reasoning:

• Stage I: Execution. The generated program must compile or interpret correctly with all
necessary libraries included, and successfully perform basic I/O operations (e.g., reading
and writing files).

• Stage II: Solution Generation. The program must produce a non-empty output within the
predefined timeout and adhere to the expected output format.

• Stage III: Verification. The solution must satisfy all problem-specific constraints, as
checked by a problem-specific verifier.

However, solves@i only indicates whether a feasible solution is eventually produced through the
iterative process – it does not account for solution quality. To address this, we additionally define
separate metrics for quality and yield as follows:

Quality =
1

N̂

N̂X

n=1

min

✓
1,

c?n
cn

◆
Yield =

N̂

N
,

where cn and c?n represent the cost of the LLM-generated and expert-provided solutions, respectively,
and N̂ is the number of instances that pass verification (Stage III) in the current iteration. In this paper,
we adopt the capped version of quality, which checks whether the LLM matches expert performance
(up to a maximum of 1), though an uncapped version can also be used to measure cases where
the LLM outperforms the expert. We define a unified metric, the Quality-Yield Index (QYI), as the
harmonic mean of quality and yield. This formulation, analogous to the F-score [144], penalizes
imbalanced values more strongly than the arithmetic mean:

QYI =
2 · Quality · Yield
Quality+ Yield

.

QYI captures both success rate and the relative quality of solutions, enabling holistic evaluation of an
LLM’s agentic reasoning capabilities, including its capacity for long-horizon planning and iterative
refinement. Additionally, we can define a weighted QYI by averaging QYI scores across different
problems, weighted by the number of instances in each, as an overall performance metric.

4 Benchmark Construction

This section outlines the construction of our combinatorial optimization benchmark, detailing the
principles behind problem selection and providing an overview of the resulting problem set.

4.1 Problem Selection Criteria

Our primary goal is to evaluate an LLM’s capacity for reasoning rather than its ability to regurgitate
well-known algorithms. To this end, we intentionally exclude ubiquitous problems such as the
Traveling Salesman Problem [116] and canonical satisfiability (SAT) formulations [125] – problems
that are so widely studied and frequently included in public datasets that they are likely memorized
during pretraining. Instead, we focus on problems that meet the following criteria:

Limited exposure in the literature. For each candidate problem, we perform a Google Scholar
search and retain it only if the most-cited paper has fewer than 1,000 citations (as of April 2025). This

5

reasoning and problem-solving abilities required in our multi-round agentic setting. Specifically, it
does not reflect whether the LLM can understand problem constraints, debug based on feedback, or
iteratively refine its solutions over multiple attempts.

To better evaluate LLMs in this complex setting, we introduce a new metric, denoted as solves@i,
which tracks the LLM’s ability to solve constrained problems within i iterations:

solves@i :=
1

N

NX

n=1

1(pass stage s in the first i-th iteration) ,

where N is the total number of test instances, and s 2 {I, II, III} indicates the specific stage of the
pipeline that the solution must pass. Each stage reflects a key milestone in agentic reasoning:

• Stage I: Execution. The generated program must compile or interpret correctly with all
necessary libraries included, and successfully perform basic I/O operations (e.g., reading
and writing files).

• Stage II: Solution Generation. The program must produce a non-empty output within the
predefined timeout and adhere to the expected output format.

• Stage III: Verification. The solution must satisfy all problem-specific constraints, as
checked by a problem-specific verifier.

However, solves@i only indicates whether a feasible solution is eventually produced through the
iterative process – it does not account for solution quality. To address this, we additionally define
separate metrics for quality and yield as follows:

Quality =
1

N̂

N̂X

n=1

min

✓
1,

c?n
cn

◆
Yield =

N̂

N
,

where cn and c?n represent the cost of the LLM-generated and expert-provided solutions, respectively,
and N̂ is the number of instances that pass verification (Stage III) in the current iteration. In this paper,
we adopt the capped version of quality, which checks whether the LLM matches expert performance
(up to a maximum of 1), though an uncapped version can also be used to measure cases where
the LLM outperforms the expert. We define a unified metric, the Quality-Yield Index (QYI), as the
harmonic mean of quality and yield. This formulation, analogous to the F-score [144], penalizes
imbalanced values more strongly than the arithmetic mean:

QYI =
2 · Quality · Yield
Quality+ Yield

.

QYI captures both success rate and the relative quality of solutions, enabling holistic evaluation of an
LLM’s agentic reasoning capabilities, including its capacity for long-horizon planning and iterative
refinement. Additionally, we can define a weighted QYI by averaging QYI scores across different
problems, weighted by the number of instances in each, as an overall performance metric.

4 Benchmark Construction

This section outlines the construction of our combinatorial optimization benchmark, detailing the
principles behind problem selection and providing an overview of the resulting problem set.

4.1 Problem Selection Criteria

Our primary goal is to evaluate an LLM’s capacity for reasoning rather than its ability to regurgitate
well-known algorithms. To this end, we intentionally exclude ubiquitous problems such as the
Traveling Salesman Problem [116] and canonical satisfiability (SAT) formulations [125] – problems
that are so widely studied and frequently included in public datasets that they are likely memorized
during pretraining. Instead, we focus on problems that meet the following criteria:

Limited exposure in the literature. For each candidate problem, we perform a Google Scholar
search and retain it only if the most-cited paper has fewer than 1,000 citations (as of April 2025). This

5

cornell-zhang.github.io/heurigym

penalizes imbalanced values more strongly than arithmetic mean (similar to F-score)

A rich trade-off space of quality and yield

https://cornell-zhang.github.io/heurigym

27

My Predictions – Parting Thought

Design
(Manual)

Compiler
Construction

(Manual)

Chip/Arch.
Specification

(Manual)

Design
(Auto)

Compiler
Construction

(Manual)

Chip/Arch.
Specification

(Manual)

Where are we heading
in the next few years?

Design
(Auto, Verified)

Compiler
Construction

(Auto, Verified)

Chip/Arch.
Specification

(Auto, Verified)

a true virtuous cycle

Where are we now?

What could be the next
big game changer?

