OB A TAEHTS S H(Lllj

INSTITUTE OF COMPUTING TECHNOLOGY , CHINESE ACADEMY OF SCIENCES 5L g ﬁg ,75 ;:‘- % . _}j =i ;; J ;;'
a rs

QiMeng: Automated Hardware and

Software Design for Processor Chip

Di Huang

Institute of Computing Technology
Chinese Academy of Sciences

The Problem of Hardware and Software Design Automation

The automatic design of hardware and software has long been a pursuit of researchers

CHESS MACHINE of the 18th cen-

A ChQSS

Machine

Electronic computers can be set up to

Playing

play a fairly strong game, raising the
question of whether they can “think”

tury was actually run by man inside. by Claude E. Shannon

RIES philosophers it was undertaken with a serious purpose
scientists have speculate t in mind. The investigation of the chess-
ther or not the human playing problem is intended to develop
techniques that can be used for more
practical applications.

During the past decade sev- The chess machine is an ideal one to
-scale electronic computing start with for several reasons. The prob-
been constructed which lem is sharply defined, both in the al-
are c\pz\ble of something very close to lowed operations (the moves of chess)
the reasoning process. These new com- and in the ultimate goal (checkmate).
puters were designed primarily to carry It is neither so simple as to be trivial nor
out purely numerical calculations. They too difficult for satisfactory solution. And

perform automatically a long a!qusnca such a mmhme could be pitte:

Iready a considerable lits

ubject of chess :
ng the late 18th

Hungarian inventor

on Kempelen as-

a device known as

plicit set of rules can be given for mak-
ing satisfactory moves in such an end
game, the problem is relatively simple,
but the idea was quite advanced for that
period.

N electronic computer can be set up

to play a complete game. In order to
explain the ﬂ(‘luﬂrae(up of a chess ma-
chine, ay be best to start with a
general picture of a computer and its
operation.

A general-purpose electronic com-
puter is an extremely complicated de-
vice containing several thousand vacuum
tubes, relays and other elements. The
basic principles involved, however, are
quite simple. The machine has four main
parts: 1) an “arithmetic organ,” 2) a
control element, 3) a numerical memory
and 4) a program memory. (In some
designs the two memory functions are
carried out in the same physical appa-

. ratus.) The manner of operation is ex-

jperat
per left).

lonest attempt to dealgn a
914

actly analogous to a human computer

ing out a series of numerical caleu-

s with an ordinary desk computing
machine. The arithmetic organ corres-
ponds to the desk computing machine,
the control element to the human opera-
tor, the numerical memory to the work
sheet on which intermediate and final
results are recorded, and the program
memory to the computing routine de-
seribing the series of operations to be

- performed,

In an electronic computing machine,
the numerical memory consists of a large
number of “boxes,” each capable of hold-
ing & number. To set up a problem on
the computer, it is necessary to assign
bax numbers to all numerical quantities

... playing a fa|r game of chess ...

... translating from one language to another ...
. designing electrical filters and relay circuits ...

REVIEWS 289

TI(f) and a suitable code for the number ». (Both f and » are variables here.) Then the
machine is to go to work and is to produce a code for a number if and only if f(n) is
defined; and if f(») is defined the coded number is to be f(»). (2) Similar to (1) but now
the machine is to reproduce on the tape not only f(») but (in coded form) all steps that
the machine with the program II(f) would go through in computing f(») from .
The author a.sserh that pmb!nm (l) can be solved b using the

ion and)! for r d: d by Kleene, f has a Gddel
number z and if f(») is defined f(n) = U(uyT1(s. », ¥)). So if one constructs the pro-
gram for B-computing U(uyT1(z, », ¥)) one has solved (1). Problem (2) is said to be
more difficult and the second paper is mostly devoted to constructing in detail a
program solving (2). It seems to the reviewer, however, that since the computation
that hine B goes th h when d by II(/) and fed » on the tape is also
a partial recursive function of II(f) and =, (2) could be settled by a short argument

like that used in (1). STEVEN OREY

AronNzo CHURCH. A pplication of 1 ith: ic to the problem of civcust synith.

of talks pr at the In Jor Sy Logic
Cornell University, 1957, 2nd edn., C ications R h Division, i
for Defense Analyses, Princeton, N. J., 1960, pp. 3-50, 3a—45a.

In this early paper on the application of formal logic to ci its and ta
Church develops and ds a theory of icted recursive arith ic first pi d
in his review (XX 286) of an article by E. C. Berkeley. The author here presents
several alternatives for the recursion schemata of that system: Let s = (sy, ..., sa),
» = (ry, -.., ¥a). The schemata for restricted recursion (A) are

7(0) = Pq[s(0)] i=1,...,n

7t + 1) = Quls(®), s(¢ + 1), r(1)]
and for wider restricted recursion (B) are

74(0) = Puals(9)], ..., ri(h) = P..[f(OJ. <. S(A)]T
- C+) r(t), ..., r(E+ B
v C). the schemata are the same as for (B) except
L =0, . &
7} automata can be treated by means of restricted
c thich is reducible to (A).

‘Q‘ ietic are studied. The synth ', blem: given a
which is an of i i to
ses for a circuit which satisfies the requirement.
th and equivalences, to

$ the requirement.

st for the case of one free variable (Case 1):

= azg), 01(0), - .., ou(by), 01(‘) -, ot + bai)]
F=1,cvoam Tmlie,p

it a test to determine if a solution is possible.

thesis problem is included by Wang in XXV 373.

requirement with two or more free variables is

rith quantifiers, is treated

juantifier. Several subcases
1 9 5 7 tined. Case 4, in which the
ure given about a possible

rement contains +, = and

Given input string alpha and output strings beta, is
it possible to automatically construct a circuit that
satisfies the alpha and beta constraints?

V1. Automatic Programming

A. Introduction

The automatic writing, checking, and debug-
ging of computer programs are problems of great
interest both for their independent importance and
as useful tools for intelligent machines. This
section shows how a theorem prover can be used to
solve certain automatic programming problems. The
formalization given here will be used to precisely
state and solve the problem of automatic generation
of programs, including recursive programs, along
with concurrent generation of proofs of the correct
ness of these programs. Thus any programs auto-
matically written by this method have no errors.

We shall take LISP ™ as our example of a
programming language. In the LISP language, a
function is described by two entities: (1) its
value, and (2) its side effect. Side effects can
i i of their effect upon the
ethods for describing
prations, as well as meth-
riting of programs in a
guage, were presented in
plicity, in this section
LISP, in which a LISP
the standard notion of a
value but no side effect.

1969

The automatic writing , checking, and
debugging of computer programs are
problems of great interest both for their
independent importance and as useful
tools for intelligent machines.

Problem Formulation

Problem Statement

Description 1/O Verification

Program Design ‘

x

Computation

—D

D

Boolean Circuits / Programs

Define the set X of functions and
design constraints described in natural
language, and the verification
condition R (x , y).

Construct a mapping: s,
st IRy

The set of executable operations

Example: Existing Processor Design Flow

- Netlis

| ﬁ |
- Logic RTL
. Design = : & o = =
.doc Description e Design V| g
Func Spec
4 + N
Arch Design Verification
~ . Plan
Module Design ;
\ —/ I
v 1 A 4
I o o .
i) Verification
Design Spec | Simulator Jesf-- -~ om=2 o ook <
I : Design
NL 10O I Func points
- \erify : _Test Inputs
RTL . ’ 7 DUT ————
T arge
. . Feedback Code/Func
Logic|Synthesis ! (_Coverage J
A I
Netlist ' | Formal Methods
|

layout
1e sl vy

The current processor design flow is overly
lengthy and complex. Existing EDA tools
can only handle a single stage from formal

input to formal output, and a large amount
of manual involvement is still required in
the design process.

Especially in the process from design
documents to RTL code and code fixes
based on verification feedback, the work is
almost entirely done manually—writing,
debugging, and modifying—with little

support from EDA tools.
4

Challenge 1: Large Solution Space

~1080 particles

“half universe”

Materials (@i}

Challenge 1: Large Solution Space

~1080 particles

32bit CPU. 1010°%

Challenge 2: High Accuracy Requirement

“Find the particle in [l

One billion tests (each with kilos
instructions) to ensure Intel P4 CPU
with a 99.99999999999% accuracy

VS

CAT CAT, DOG, DUCK

Image classification Object detection
~90% ~80%

Voice recognition

~90% QA agent

~90%

Our Attempt: Top-down Prior

Computer Memory Hierarchy

bt

Top-down Prior

3

“First, circle a meaningful range”

Design
Prior

Semantic
Prior

Our Attempt: Bottom-up Feedback

999

99.99999

“Then, get the target through feedback and monotonic iteration.”

ot Power Partomance Area

DactoBased — LowCostOmen
Desin Fow Desn Fow

— Shon TAT O

Lower Engisaring Cost Shorter Tum Around Tima.

Accuracy Performance

Bottom-up Feedback

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM JAAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV , QiMeng-CPU [IJCAI 24, 25]

Processor

Automated High-Performance
Library Generation

Automated Tensor Program
Transcompiler

Automated Compiler
Tool-Chain Design

Automated OS Configuration
Optimization

Automated HDL Generation

Automated Front-End Design E=:_'E::.=E_§=.:.§=E:;=E§E:E:E=E:

]

https://gimeng-ict.github.io

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Automated High-Performance
Library Generation

[10.404030] serlal: s250/16550 driver, 4 ports, IRQ sharing disabled 1.OE+08 -
Automated Tensor Program A :
: s e et Do o LOE+07 |
Transcompiler | bemy o i e et 1OE+06 1
. b 2oy e s 1L.OE+05
O I I l I e r [45.735349 e (initmem) memory: 148K f
. { 45.738901 ot selected by kernel config. ,E\ 1.0E+04 o
Automated Compiler i 2 1o+0s |
| =i
. . | == o 1.0E+02 A
Tool-Chain Design is | |
arcl 1.0E+01 A
i/
"""""""""""""""""""""""""""""" btn LOE+00 -
. e CEZs523923838¢2¢%
0OS Automated OS Configuration b EREEEEE R EER
ev 2 € = =z » 8 5 =
o o 5 ete 2 = 5 2 s
Optimization 1 ig * =2 &
i Ay ~
/ = o
___ Hel
Automated HDL Generation

Automated Front-End Design

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM [AAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng - iCt.githU b.io

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Automated High-Performance
Library Generation

Automated Tensor Program

Transcompiler
Compiler
Automated Compiler
Tool-Chain Design
0OS Automated OS Configuration
Optimization
Automated HDL Generation
Processor

Automated Front-End Design

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM JAAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV , QiMeng-CPU [IJCAI 24, 25]

Test-Time Scaling on RTLLM v1.1 (FLOPs)

72.9%
—&— Ours
%7 —— DeepSeek-R1
4.1%
0.6 1
§ 0.5 6%
a;‘0 4
o 36.6%
=
19
® 0.3 .0%
0.2
0-1 7.10/
1013 10'14 1615 1016
FLOPs
NL @ HDL II:“: ll.=. I: n II::
[} EE =R H@ EEN EEEEE EEER
H -':_E' -E::-:::E:-:::':-

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Automated High-Performance
Library Generation

Automated Tensor Program

i Transcompiler
Compiler
Automated Compiler
Tool-Chain Design
0OS Automated OS Configuration
Optimization
Automated HDL Generation
Processor

Automated Front-End Design

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM [AAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV , QiMeng-CPU [IJCAI 24, 25]

I want to improve the speed of creating processes, how do

s I modify the linux kernel's configuration options? Please
provide specific options directly and give the recommend
setting.
Modifying the kernel's configuration options to improve the speed
chatgpt: of creating Linux image processes can be a complex task, and it

largely depends on the specific use case and requirementsKeep
in mind that changing kernel configurations should be done with
caution and with a good understanding of the potential impacts on
your system.

1 CONFIG_BASE_SMALL:

Recommended Setting: y

description: ...

2 CONFIG_PREEMPT:

Recommended Setting: y (for desktop systems), n (for servers)
Description:...

7 CONFIG_HZ:
Recommended Setting: 1000
Description:...

CONFIG_CC_IS_GCC=y

CONFIG_AS_IS_GNU=y

CONFIG_LD IS BFD=y

Total score

3504

Default Perf.

3004

2004

1501

data

0 10 20 30 40 50

https://gimeng-ict.github.io

CONFIG_GCC_VERSION=100301
CONFIG_CLANG_VERSION=0

CONFIG_AS_VERSION=23500

CONFIG_LD_VERSION=23500
CONFIG_LLD_VERSION=0
CONFIG_CC_CAN_LINK=y

CONFIG_TEST_MEMINIT is not set
CONFIG_TEST_FREE_PAGES is not set
CONFIG_ARCH_USE_MEMTEST=y

\

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Processor

Automated High-Performance
Library Generation

Automated Tensor Program
Transcompiler

Automated Compiler
Tool-Chain Design

Automated OS Configuration
Optimization

Automated HDL Generation

Automated Front-End Design

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM JAAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV , QiMeng-CPU [IJCAI 24, 25]

CUDA

l\\

I
i

l
I
l
| -
l
l

MLU HIP DL Boost
a a
oxte _ mlu global exter _ global
_ nram__ half date_bl using floatl6xd = _ pragma
_wram__ half filter_ sing floatx4 = _ a for (int i
eSalll § i=e;1¢
for (5] Siais] 1t c_row_bas
_ memcpy(date blo onst int ¢ col bas
or {int k = 8; k
_ memcpy(filter floatd d = {0.67};
_ bang_mlp(date for{int k step = @;
__memcpy{output floati6x4 a, b;
3 for(int i = o3
i
1 i a_row =
¥ int a col =
a[i] = Afla_
4 D > e } }
v Sf v

\ glo natmul (half *A, half *B, Float *D)

lx\ (blockId blockDim.x + threadIdx.x)/52;
iy = (hlmkldk blockDim.y + threadIdx.y);

wmma : ‘Fra)ﬁ t a_frag; \
wmma: :Tragmeot b_frag;
wmma: :fragme® ab_frag; \
Wmma \ (ab_frag, \
int a row = ix * \
b_row = 1y \
k+=156) { \
i a col k;
b col = k; \
T {a_row < &&\ &% b_row < -&&m< 2} {
A/ Load the input!
\ (a_frag, A + a_col + a_row "\ 12) 5

)

(b_frag, B + b col + b_col * L, §12);
< AN
4

=

=k

=k

O

(h

N

=

3

m l.
-

kQ

a

~+

Q
;‘I -
:I
c

o

6.

»

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Automated High-Performance
Library Generation

Automated Tensor Program

. Transcompiler
Compiler
Automated Compiler
Tool-Chain Design
0OS Automated OS Configuration
Optimization
Automated HDL Generation
Processor

Automated Front-End Design

QiMena-TensorOp [IJCAI 251, QiMena-Attention [ACL 25]
QiMena-GEMM [AAAI 251, QiMena-Xpiler [OSDI 25]
BabelTower [ICML 221, AutoOS [ICML 24]

CodeV, QiMeng-CPU [IJCAI 24, 25]

User Input:

Generate a 1024x1024x1024 GEMM code on RISC-V C910.

ugn # First, extract hardware factors from C910 manuals. IE 251%

@ ;l ...L2 cache IMB, INST: vfmacc.vv. ...

LLMs

] | -

Second, ... generate assembly code from python scripts. .

4 vsetvli t0, zero, €32, ml, ta, ma

Third, ... tuning the code to optimize performance... Q

4 _(optimized code) ...

J Portability

€910 ‘

O O

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

CPU CodeV Xpiler

> BangC

Cuda = HIP

® DL Boost

@

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

CPU

17

Automatically Generate the CPU from a Finite Set of 10s

Test case for verification

UVM Testbench

UVM Test

UVM Environment

uvm
Sequencer

UvmM
Scoreboard

S

UVM Agent |4

| Design
Under Test

(DUT)

Get |/O spec

Input Output

> —

Input Output

Problem: How to generate a CPU given a finite set of 10s (truth tables).

18

Binary Decision Diagram

o]

— ek OO - -k OO N
>

= I e A e I |
—h ok)) =k () () =k h

.; of
0] E3] K3 |E0) E3{ KX K| KB

Binary Decision Diagram (BDD):

« A Boolean function can be represented as a rooted, directed, acyclic graph, which consists
of several (decision) nodes and two terminal nodes.

« The two terminal nodes are labeled 0 (FALSE) and 1 (TRUE).

« Each (decision) node u is labeled by a Boolean variable and has two child nodes called low
child and high child. The edge from node u to a low (or high) child represents an
assignment of the value FALSE (or TRUE, respectively) to variable xi.

19

Binary Deeciston Speculation Diagram

Problem: How to generate large-scale and accurate CPU given a limited set of 10s.

BDD (Binary Decision Diagram) BSD (Binary Speculation Diagram)
x1 x2 x3| f_ BSD g.
0 0 O 1 c
0 ¢ 19 R
R RV JERG_ |
10 110
. 1 1 0] 1 ’ .’ oo
) : : ke SRR IR I | -
L e L] e e L i
All of truth table, leaf-nodes assigned Partial truth table, leaf-nodes speculated

Difficulty: Fitting an almost infinitely large truth table.

32-bit RISC-V CPU

(~1800-bit input/output)
20

Reduce the Search Space with Bool Distance

F(x) F(x)= X;F(x[x;=0)+xF(x|x,=0) .\

‘ diSt(Q,O'H) dist(O,0"|I) ..
| (L, O) .' [.‘; \.“ Lt q % - ?‘\ .b» Netlist

F(x)=0/1 F(x|x;=0)=0/1 F(x|x;=1)=0/1 ’ . ’ ’ :
l_-_.

a a a
b b b
C C C = -

« Boolean Distance: Monte Carlo method to approximately calculate

Dist(f,9) = Ca(f) + Cal(g) — Ca(7)

Oracle

oo ®

« Merging the nodes with 0 Boolean Distance to narrow down the space

»

21

Speculate, Compute, and Verify

Speculate Circuit Diagram Generation Compute and Verify Accurately pinpoint
BSD (Binary Speculation Diagram) errors: if one occurs, identify the leaf node

Q/@\l and continue sampling and expanding it.
4 F(x) F(x)= SF(x[x;=0)+x;F(x[x,=0)

N~ N~

T .l‘ |:> . ' dzsz(00|l) .\ dm(OO N
’ pq ¥

. . F(x)=0/1 F(x|x ~=) =0/1 !(E -=1)=0/1 ."ﬁ ﬁ ‘

MCTS-based leaf nodes speculation

{7 J

Iteration: Continuously correct errors, and a rigorous theoretical proof demonstrates that by

iteratively expanding the guessed leaf nodes, more accurate generation results can be achieved.
Theorem 1 (The accuracy of BSD boosts after expansion). After expanding the generated BSD
Fi. by any input bit x; to Fj..1, the accuracy of expansion ended with F;. will be no larger than the
accuracy of expansion ended with F.,, that is,

Ace(F;) < Ace(Friq). (3)
22

2021: QiMeng-CPU-v1

S : Nvidia
Adder Circuit logic ~200 Gates Roy et all 5021] Deep RL

Simple ALU Circuit logic ~1000 Gates [CPLIJepie\t/.al-.I-Z\QQO] Decision Tree

~2500 Gates ~ Univ. Tokyo Assemble

Simple ALU Circuit logic [Rai et al. 2021] Learning

8- bit CPU Circuit logic ~ ~1000 Gates [BIOCHRLV(;J:%OB] Deep Learning

Binary
32- bit CPU 2021 4000900 icT.cAs speculation
ates .
Diagram

The design scale is increased by thousands of times

23

2021: QiMeng-CPU-v1

Frontend design of a 32-bit RISC-V CPU (4 million gates) in 5 Hours

Area

Core
Power

Process
Freq

« 2021.12: Tapout of QiMeng-CPU-v1

« 2022.05: testing, running Linux OS and SPEC

CPU2000 successfully, on par with Intel 486

serial: 8256/16556 driver, 4 ports, IRQ sharing disabled

Freeing unused kernel image (initmem) memory: 148K
Kernel memory protection not selected by kernel config.

488K

1A

(L)

spec
sys

root
sbin

[18.464036)

[10.611561] k: console [ttyse] disabled
[10.623803)

[18.636442) onsole [ttySe] enabled
[18.636442) onsole [ttySe] enabled
[10.644579] : bootconsole [sbie] disabled
[18.644579] printk: bootconsole [sbi@] disabled
[11.558811] loop: module loaded

[45.686374) Freeing initrd memory: 64

[45.735349)

[45.738901]

[45.744857] Run /init as init process

11 - [T

I3 11 1 12l
Bfed | |

i {1 L

version : -

Arch i RISCV32

[#s

bin etc init nuxrc root

dev intl 1ib proc sbin

/ # touch helloworld.sh

fes

bin helloworld.sh b

dev int nuxre

etc init proc

| # echo "#1/binfsh" >> helloworld.sh
/ # echo "echo \"Hello Werld\"" >> helloworld.sh
/ # chmod +x helloworld.sh
/ # ./helloworld.sh

Hello World

spec

11
ETN |
|)

I

sys
usr

9.uart: ttyse at MMIO 8x10000008 (irq = 2, base_baud = 3125000) is a 16558A

Pushing the Limits of Machine Design: Automated CPU Design with Al. [JCAI 2024

Dhrystone/s

1.0E+08
L.OE+07
1.OE+06
1L.OE+05
1.0E+04
1.0OE+03
1.OE+02
1.0E+01
1.0E+00

$9 2I0POLLTLIO))

02089 E[OI010N

98¢€08

0098 XVA

0T0EV
IV-NdD
XS98¥08

98508
WU

111 wnnuag

N
1N

MOE6E L1 210D

2024: QiMeng-CPU-v2

QiMeng-CPU-v2, an automatically designed superscalar CPU core, achieving performance comparable to the ARM Cortex-A53.

Automated instruction-level parallelism: By introducing internal processor state information, it predicts data dependencies between

instructions to achieve parallel execution across instructions.

iy
L

cycles 0 1 2 3

rl=r3xr4
r2=r5xrl ..
7 -~
¥ \\,,_
Predict r1 Read predicted
with execution trace rl

Decouple inter-instruction
data dependencies

Combinational Module

S-BSD Trained
[Selector] ®", (pn+1, P (pn"'k
all current]
states l .
> Multiplexer Buffer
=4 Combinational Module
| =5 L|1n+m’
—— S _ . [s-BSD Trained .
- —3 Speculator predicted
— < data
—] S
1 =2 selected states ‘ |
Llj‘n - ~)/,

execution width l m

Selector: Simulated Annealing Speculator: BSD Expansion

5 000 - 00 Energy(sh)

N | search) = .
ntrsee - 00 " - @ oms N s @
taken @@ ® - @ ®| Energy(S*) o=t A= e Iy Vat

_/ | taken . Q © § b Pr g\

i B e B continue ; st
s [00® - @8 — jteration 0

Predict dependent data

QiMeng-CPU-v2: Automated Superscalar Processor Design by Learning Data Dependencies. IJCAI 2025

Throughput
Dhrystone/s

10000000
ARM A5 ARM Cortex

® ® A53
® ARM 7

Pentium

1000000

100000
80486DX2
VAX 8600 ® 80486SX

® ® A3010

80386

10000
1000

100

SOTA Ours

382x compared to QiMeng-CPU-v1

25

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

26

The Challenges of Constructing Prior with LLMs

Data Scarcity

Natural language,
video, image
10~3ZB

octocat commented now

Let's update this trigger for the CodQL analysis wor

Lines 1. 75

1410 22 in 68603

C e SOftware code

be:

hes below must be a
ra main 1 -
o 2 Teu ous-outcome: true
It u 2 sche
22 - cron: '32 11 % x §'

StarCoder 2 and The Stack v2: The Next Generation

Large Semantic Gap

Design a system that combines the barrel
shifter and the 2-to-1 multiplexer modules.
The system should have four inputs (A, B,
Shift, and Direction) and one output (Y). A
and B are the two inputs to the multiplexer,
while Shift and Direction are the inputs to
the barrel shifter module. The system
should select between the A and B inputs
based on the value of SEL, which is the
output of the barrel shifter module. The

U

Shift — barrel
Direction —{ shifter

SEL|

A —>
2:1 mux |—

B —]

module barrel_shifter (
input [3:0] A,
input [1:0] Shift,
input Direction,
output [3:0] Y

>

reg [3:0] shifted_value;
always @(*) begin
case ({Direction, Shift})
2'b00: shifted_value = A;
2'b0l: shifted_value = A << Shift;
2'b10: shifted_value = A >> Shift;

2'b1l: shifted_value = {A[0], A[3:1]};

endcase
end
assign Y = shifted_value;
endmodule

module mux_2tol (
input [3:0] A,
input [3:0] B,
input SEL,
output [3:0] Y
)s
assign Y = SEL ? B : A;
endmodule

27

Observations and Methods

Open-source codebase Multi-level summarization Instruction-tuning dataset

arp.v Prompt to GPT-3.5 Lasteustion] | — —
. Write a description about the [Instruction]
darkriscv.v . : i I
sy code snippet and a problem such — SRR \V/
7 94 that the given code snippet is S| [Instruction] _
exactly the answer to this problem. U| Design a demultiplexer with
Siie TR 5 ty 8 output lines where each SFT
Filtering n-.tl3-u e . — * | al output line corresponds to > & > /
SadnodBia exemplars [a different select signal \
= combination...
Verllog modules [Response] p
; @ From GPT-3.5 s = \/
| I iodule DMUX8_8
module_decodeStace > 2 | avel de 0 i o -
\\ o5 | module Dmuxs_s Request advanced & LY i S ______ el
] i High-level probl e .
v endnodule LLWe Tor mllithieve: s . Base LLMs CodeV series
4 summaries.

« There is an asymmetry in the conversion between formal languages (code) and informal
languages (natural language), where summarization is easier than generation.

« Multi-level summarization helps bridge the semantic gap between Verilog and natural language.

CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization 28

CodeV

TABLE II
COMPARISON OF OUR CODEV SERIES AGAINST VARIOUS BASELINE MODELS. RESULTS ARE CITED FROM THE ORIGINAL PAPER.

fis Model Model Open VerilogEval-Machine (%) VerilogEval-Human (%) RTLLM vl1.1 (%)
P size source pass@l pass@5 pass@l0 pass@l pass@5 pass@l10 Syntax Func.
GPT-3.5 - x 60.9 75.0 79.9 335 459 50.0 79.3 51.7
GPT-4 - b 60.0 70.6 73.5 43.5 55.8 58.9 100.0 65.5
StarCoder [35] 15B v 46.8 54.5 59.6 18.1 26.1 304 93.1 27.6
Base LLMs CodeLlama [36] 7B v 43.1 47.1 47.7 18.2 22.7 24.3 86.2 31.0
DeepSeek-Coder [37] 6.7B v 522 554 56.8 30.2 33.9 34.9 93.1 44.8
CodeQwen [38] 7B v 46.5 54.9 56.4 22.5 26.1 28.0 86.2 41.4
Qwen2.5-Coder [39] 7B v 66.2 79.2 83.9 34.6 45.6 51.0 89.6 41.4
ChipNeMo [40] 7B X 434 - - 224 - - - -
RTLCoder-Mistral [41] 7B v 62.5 72.2 76.6 36.7 45.5 49.2 96.6 48.3
RTLCoder-DS [41] 6.7B v 61.2 76.5 81.8 41.6 50.1 534 93.1 48.3
BetterV-CL [42] 7B X 64.2 75.4 79.1 40.9 50.0 53.3 - -
Fine-Tuned LLMs BetterV-DS [42] 6.7B X 67.8 79.1 84.0 459 53.3 57.6 - -
BetterV-CQ [42] 7B X 68.1 79.4 84.5 46.1 5347 58.2 - -
CraftRTL-CL [43] 7B X 78.1 85.5 87.8 63.1 67.8 69.7 93.5 52.9
CraftRTL-DS [43] 6.7B X 71.8 85.5 88.1 65.4 70.0 72.1 84.3 58.8
CodeV-Verilog-CL 7B v 78.1 86.0 88.5 45.2 59.5 63.8 93.1 62.1
CodeV-Verilog CodeV-Verilog-DS 6.7B v 779 88.6 90.7 32 62.5 67.3 89.7 532
CodeV-Verilog-CQ 7B v 77.6 88.2 90.7 53.2 65.1 68.5 93.1 55.2
CodeV-Verilog-QC 7B v 80.1 87.9 90.5 59.2 65.8 69.1 96.6 51.7
CodeV-All-CL 7B v 78.5 85.6 87.6 46.6 58.8 62.5 96.6 552
CodeV-All CodeV-All-DS 6.7B v 8 86.0 86.7 53.0 63.3 67.2 96.6 51.7
CodeV-All-CQ 7B v 799 88.3 91.1 54.1 65.1 68.6 93.1 58.6
CodeV-All-QC 7B v 81.9 89.9 92.0 56.6 67.9 714 96.6 532

Achieves a leading position in VerilogEval and RTLLM benchmarks

CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization

CodeV-R1

@ Reinforcement Learning
(Adaptive DAPO)
module Top(..); ...

%Diﬁ‘iculw Filtering,"' <Testbench>

4 module testbench; ...

.

CodeV-R1

<NL> <€ 1

The module should...

<Answer>

i

!

CodeV-R1-Distill
T

-
-
S

CodeV-R1: Reasoning-Enhanced Verilog Generation

- -
-

(W Natural Language Description

NL-Thought-Code

€ Supervised Fine-Tuning
(Distillation)

<NL>

The module should...
<Think> < —
Okay... Wait, .. B ﬁ“g, Difficulty Filtering
<Answer> 2

module Top(...); ... \

e,
-
-

e
- o
S e e e, m, e Em—--————————

-
-
o

30

CodeV-R1

_different[8], Eeighbor is in[l]. But the exarﬁple says that out_differ‘ent{ﬁ] is in[2] XOR in[B]T so the code for out_&ifferent would be:

out_different[3] = © (nho neighbor to the left)

out_different[2] = in[2] ~ in[3]
out_different[1] = in[1] ~ in[2]
out_different[@] = in[B] * in[1]
Wait, but the example says that in[3]'s neighbor to the left is in[@]. Wait, the example says: \"For this part, treat the wvector as wrapping around, so in[3]'s neighbor to the left

is in[@].\" Walt, that's conflicting. The example savs that inf31]'s neighbor to the Jeft ic in[8], but according to the previous understanding, the neighbor to the left of in[3] is
in[2], which is lower index. So this is a problem.|Let me re-read the problem statement.

Problem statement for out_different: Re - rea d th e p ro b I e m

(3) out_different: Each bit of this output vector should indicate whether the corresponding input bit is different from its neighbor to the lR Eﬂ éﬂe, out_different[2] shoul
d indicate if in[2] is different from in[3]. For this part, treat the vector as wrapping arcund, so in[3]’s neighbor to the left is in[@]. e

Ah, so the neighbor to the left is the higher index. So for in[3], the neighbor to the left is in[2], not in[B]. But the example says that out_different[2] is in[2] different from i
n[3], which aligns with that. So perhaps the wrapping around is not the case here. The example says that in[3]'s neighbor to the left is in[B]. Wait, that's conflicting. Wait, the p

roblem says: \"For this part, treat the vector as wrapping around, so in[3]"s neighbor to the left is in[8].\" So when the vector is wrapped around, the left neighbor of inl3] is in
[B]. So the neighbor to the left is the higher index, but if there is none, then wrap around to the right. So for each bit i, the neighbor to the left is (i-1) mod 4. JWait, no. Let

me think again.

In the case of wrapping around, the neighbor to the left of in[3] is in[8], which is the rightmost bit. So the left neighbor is considered the higher index.Rﬁfr‘I g[gt there is n
0 higher index, so the left neighbor wraps around to the right. So the left neighbor of in[3] is in[8]. So the code for out different[i] is in[i] XOR in[(i-1) mod 4]. Wait, but how
to handle that. let's see:

For i=3: neighbor to the left is in[B®] (wrapping around). So out_different[3] = in[3] * in[@]

i=2: neighbor to the left is in[3], so out different[2] = in[2] * in[3]

i=1: neighbor to the left is in[2], so out_different[1] = in[1] * in[2]

i=8: neighbor to the left is in[1], so out_different[B] = in[B] ™ in[1]

Wait, but the example says that out_different[2] is in[2] different from in[3], which is correct. So the ceode for out different is:

L3
out_different[3] = in[3] ~ in[8] COdeV- R1 Rea Sonlng
out_different[2] = in[2] " in[3]

out_different[1]

in[1] ~ in[2]

=

COdeV-R1 . Reasonincout_di-FFerent{B] = in[@] ~ in[1] 31

Tiny Model Size, Small Computation, Ultimate Performance

Test-Time Scaling on RTLLM v1.1

—&— Ours
—ill— DeepSeek-R1

accuracy (%)
-
o
a&

10%71 1%

72.9%

1%

accuracy (%)

4096 8192
Response Length Budget

16384

Test-Time Scaling on RTLLM v1.1 (FLOPs)

—@— Ours

|| =~ DeepSeek-R1

o
o

©
n

e
B

o
W

=
N

o
[

7.1%

36.6%

72.9%

1013

“ https://huggingface.co/zhuyaoyu/CodeV-R1-Qwen-7B

https://huggingface.co/collections/zhuyaoyu/codev-series-683f16115¢357416e17b1bb5

CodeV-R1: Reasoning-Enhanced Verilog Generation

1614

FLOPs

1615

1016

QiMeng: Fully Automated Hardware and Software Design for Processor Chip

Xpiler

> BangC

Cuda = HIP

® DL Boost

&

33

The Dilemma of Transcompilation

34

The Dilemma of Transcompilation

AAAAA
a » [| n
d » . [}
- - ? - -
a » []
XL llll
_— Rule based
100%}--- 7 [39] Tenspller &
- [13] Metalift [4?] PPCG '*
yiae P Our goal
1y §9mbaltc o
© Synthesis - .
= 50% [9] Open.ﬂd-m \
o [37] GPT-4
<
Data Dﬂ\f&ﬂ
Approach
. 0% =
High accuracy, = = T
low scalability (Add) (GEMM) (Attention)
Scalability (LoCs)

LN LN BN R

High scalability,
low accuracy
35

QiMeng-Xpiler

- f Bu . s il
LLM-Based Program vg SMT-based code repairing
Transformation Localization

Leveraging LLMs' code comprehension and || Identify faulty code | Repair the incorrect low-level details
generation capabilities, we design general- || segments using 1/O pairs || through SMT-based symbolic synthesis
purpose compilation prompts to enable ||and execution traces || with limited scale.
automatic translation and enhance flexibility. | | through unit testing. i”dex'r,e'ated errors: 73 _ siler]

Source _| Transformed R Unit ° . B“9b9|y ckode | Repaired

> > > ocC i
Program Pre-defined Program Test 1 sMT solver code block
\—/_
Prompts
Tensorization of DL Boost Tensorization of MLU Q
O e @) e e S Candidate program
" v ey e eyl o Target <P
°“ oot miion] S e el o o s Program

A S Specification Success

Final program

ok

mshared float A_shared[16]; ;"mm,ﬂoa!/\,nmmlﬁz F db k

R TR eedbac
o) e
Code Guessing Auto Verification Auto Repair

[1] Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations 36

Transcompiler across Different Systems

Emnpikailan Seoursy Damipniztian Aoourssy

L : § >
kg e CUBAC BANGC Mip CwibVNN] | CUIMGC HANGE Mg ©wlib V%]
i %] 0 i i i3
i EST (TR}] 827 HLT
1T win LR ' T Wi ul
UL A fLE w2] 1i W2
BT e 5 L* N L
T L] 2 =
FILT il 10 (L] LIk
™ nif I @ i L}
7 f il [} i 13
&0 A 0 [] iai
(| ERTFE il] 1] 5
#14 i H bl
i T3 TE6 L
FILI] 1| ([e, 7.0 L
1 | a7 d 54
] o Tk] i1
i 1] g7 o 244
Hig 1l B 423 L] a4
a2 0T 97 s | 1
) 1 i} = 4 rd = i
Fu L] i ine [E TR L
T4 TamnShal LI | H d ET
e o] Zam-Sh | il i
14 S B3 41 L] F-
Cwith YNNI DpenAl ol Few-Sh E o0 o
ik gy e ST ¥R E] is
ik SSAT - Sl Duigegin | BAS B3 19 k 85T
Farooes LILT] L ¥ liEl L 8 T .l

Experimental Results on Different Processors

Deformuble Atlention | La b RN Y
; BAMNIG O CUDN L
i ~ LTS ;
| [CRIS ES Performance | Lsls Perlormanoe
. Ml | 6l (DL ~ | il (DL
ST) S ;- L
Code wit Falcon i5+1.5h 9. 20 21h 325 %
DEAE | Teme Saving el] .4=
| Mamual a3 440 850 T T8 Th%
Junior s Bt Arecinry : bl
Coder | wi Falcon I5+3h £5.17% 21h 3250 %
Rt | Tome Saving | ~%6.0 ~34.35

Productivity
Improvement

PyTorch N Falcon —— Corrected Cases
(a) C with VNNI - CUDA C

2
4Ll_l_._l_l_i_._l_l_._._l_I]]]_l_l_Ll_Ls

1
Q= -0
. - - - - - - 3 - - - 8

(b) CUDA C —» BANG C

(c) CUDA C - HIP

Lo ¢
¢
¢
4

15 s I
T
1.0 ¢
05 ¢
0.0- -0
o
.

Normalized Performance

(d) CUDA € —» C with VNNI

| == W=-=

S & & o < & > S RS <& ;
é(?‘ eé‘\ éﬁ‘ > \@*‘ \\C?‘ 1S ¢ & IS \q@@ ¥) R & & ‘eé R & 0495
& < ® & & < & X A3 52 o Gl
& & = N N
13 <& @
N s
o

Performance Comparison with Different PyTorch Backend Libraries

« Automatic program translation across different processors
(e.g., NVIDIA GPU, Cambricon MLU, AMD M, Intel DLBoost)
and programming models (e.g., SIMT, SIMD).

 Real-world C/CUDA-to-BANG program translation with a
functional correctness rate exceeding 91.7%.

« Performance can reach up to 2x that of manually optimized
vendor-provided code.

« Programming efficiency can be improved by up to 96x
compared to manual development. 37

Conclusion: From Top-down and Bottom-up to Self-Evolution

Processor

Automated High-Performance
Library Generation

Automated Tensor Program
Transcompiler

Automated Compiler
Tool-Chain Design

Automated OS Configuration
Optimization

Automated HDL Generation

Automated Front-End Design

Prior

Conclusion: From Top-down and Bottom-up to Self-Evolution

Processor

Automated High-Performance
Library Generation

Automated Tensor Program
Transcompiler

Automated Compiler
Tool-Chain Design

Automated OS Configuration
Optimization

Automated HDL Generation

Automated Front-End Design

Prior

Feedback ?ﬁﬁﬁﬁfﬁﬁ?ﬁﬁ

