
Institute of Computing Technology
Chinese Academy of Sciences

Di Huang

The Problem of Hardware and Software Design Automation

A Chess Playing Machine. 1950.
Application of recursive arithmetic to the problem of circuit systems. Summaries of the Summer Institute of Symbolic Logic. 1957.
Application of Theorem Proving to Problem Solving. 1969.

2

The automatic design of hardware and software has long been a pursuit of researchers

... playing a fair game of chess ...

... translating from one language to another ...

... designing electrical filters and relay circuits ...

Given input string alpha and output strings beta, is
it possible to automatically construct a circuit that
satisfies the alpha and beta constraints?

The automatic writing , checking, and
debugging of computer programs are
problems of great interest both for their
independent importance and as useful
tools for intelligent machines.

1950 1957
1969

Description I/O Verification

Computation

Program Design

Problem Statement

Boolean Circuits / Programs

module top_module(
 input a, b, sel,
 output out);
 assign out = ~sel & a | sel & b;
endmodule Verilog

class MovingSum3(bitWidth: Int) extends Module {
 val io = IO(new Bundle {
 val in = Input(UInt(bitWidth.W))
 val out = Output(UInt(bitWidth.W))
 })
 val z1 = RegNext(io.in)
 val z2 = RegNext(z1)
 io.out := (io.in * 1.U) + (z1 * 1.U) + (z2 * 1.U)
}

Chisel

Function Description Truth Tables

Basic Boolean Circuits

Define the set � of functions and
design constraints described in natural

language, and the verification
condition � (� , �).

Construct a mapping �: � → �，
s.t. ∀� ∈ �, � �, � � �����

The set of executable operations �

3

Func Spec

Design Spec

RTL

Verification

Verification
Plan

Netlist

Verify

Feedback

Design
Func points
Test Inputs

Target
Code/Func
Coverage

DUT

Formal Methods

Logic Synthesis

Arch Design

Module Design

Simulator

NL I/O

The current processor design flow is overly
lengthy and complex. Existing EDA tools
can only handle a single stage from formal
input to formal output, and a large amount
of manual involvement is still required in
the design process.
Especially in the process from design
documents to RTL code and code fixes
based on verification feedback, the work is
almost entirely done manually—writing,
debugging, and modifying—with little
support from EDA tools.

Verify Verify Verify

Functional Coverage
Functional Coverage

4

5

1048

“half universe”

~1080 particles

Materials

6

1048

10125

10300

1010540

~1080 particles

>> ~101082
“universe universe”1010540

Materials

Proteins

Drugs

32bit CPU

7
“Find the particle in ”

One billion tests (each with kilos
instructions) to ensure Intel P4 CPU
with a 99.99999999999% accuracy

Object detection
~80%

QA agent
~90%

Image classification
~90%

Voice recognition
~90%

VS

99.99999999999%

8
“First, circle a meaningful range”

90%

Top-down Prior

Semantic
Prior

Design
Prior

9
“Then, get the target through feedback and monotonic iteration.”

90%

99.99999999999%

Bottom-up Feedback

PerformanceAccuracy

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

NL HDL

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library

QiMeng-TensorOp [IJCAI 25], QiMeng-Attention [ACL 25]
QiMeng-GEMM [AAAI 25], QiMeng-Xpiler [OSDI 25]
BabelTower [ICML 22], AutoOS [ICML 24]
CodeV , QiMeng-CPU [IJCAI 24, 25] https://qimeng-ict.github.io

CPU

NL HDL

CodeV

Cuda

Xpiler

BangC

HIP

DL Boost

16

CPU

NL HDL

CodeV

Cuda

Xpiler

BangC

HIP

DL Boost

17

Test case for verification

Input Output

Input Output

Get I/O spec

Problem: How to generate a CPU given a finite set of IOs (truth tables).

18

Binary Decision Diagram (BDD):
• A Boolean function can be represented as a rooted, directed, acyclic graph, which consists

of several (decision) nodes and two terminal nodes.
• The two terminal nodes are labeled 0 (FALSE) and 1 (TRUE).
• Each (decision) node u is labeled by a Boolean variable and has two child nodes called low

child and high child. The edge from node u to a low (or high) child represents an
assignment of the value FALSE (or TRUE, respectively) to variable xi.

19

All of truth table, leaf-nodes assigned Partial truth table, leaf-nodes speculated

BDD (Binary Decision Diagram) BSD (Binary Speculation Diagram)

VS

32-bit RISC-V CPU
�������

（~1800-bit input/output）

Difficulty: Fitting an almost infinitely large truth table.

Problem: How to generate large-scale and accurate CPU given a limited set of IOs.

…

20

• Boolean Distance: Monte Carlo method to approximately calculate

• Merging the nodes with 0 Boolean Distance to narrow down the space

������� ���
21

MCTS-based leaf nodes speculation

Speculate Circuit Diagram Generation Compute and Verify Accurately pinpoint
errors: if one occurs, identify the leaf node
and continue sampling and expanding it.

Iteration：Continuously correct errors, and a rigorous theoretical proof demonstrates that by
iteratively expanding the guessed leaf nodes, more accurate generation results can be achieved.

(Binary Speculation Diagram)

22

The design scale is increased by thousands of times

Object Output Gates Team Method

Adder Circuit logic ~200 Gates Nvidia
[Roy et al. 2021]

Deep RL

Simple ALU Circuit logic ~1000 Gates Univ. TW
[Chen et al. 2020]

Decision Tree

Simple ALU Circuit logic ~2500 Gates Univ. Tokyo
[Rai et al. 2021]

Assemble
Learning

8‑ bit CPU Circuit logic ~1000 Gates Univ. NY
[Blocklove et al. 2023]

Deep Learning

32‑ bit CPU 2021 ~4,000,000
Gates ICT, CAS

Binary
Speculation

Diagram

23

• 2021.12: Tapout of QiMeng-CPU-v1

• 2022.05: testing, running Linux OS and SPEC

CPU2000 successfully, on par with Intel 486

Frontend design of a 32-bit RISC-V CPU (4 million gates) in 5 Hours

Area 9.1 mm^2

Core
Power

0.13 mW

Process 65 nm
Freq 300 Mhz

Pushing the Limits of Machine Design: Automated CPU Design with AI. IJCAI 2024 24

QiMeng-CPU-v2, an automatically designed superscalar CPU core, achieving performance comparable to the ARM Cortex-A53.

Automated instruction-level parallelism: By introducing internal processor state information, it predicts data dependencies between

instructions to achieve parallel execution across instructions.

QiMeng-CPU-v2: Automated Superscalar Processor Design by Learning Data Dependencies. IJCAI 2025

382× compared to QiMeng-CPU-v1
Decouple inter-instruction

data dependencies Predict dependent data

25

CPU

NL HDL

CodeV

Cuda

Xpiler

BangC

HIP

DL Boost

26

StarCoder 2 and The Stack v2: The Next Generation

Natural language,
video, image
10^3ZB

Hardware and
Software code
10-100TB

VS

Data Scarcity Large Semantic Gap

27

• There is an asymmetry in the conversion between formal languages (code) and informal

languages (natural language), where summarization is easier than generation.

• Multi-level summarization helps bridge the semantic gap between Verilog and natural language.

CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization 28

Achieves a leading position in VerilogEval and RTLLM benchmarks
CodeV: Empowering LLMs with HDL Generation through Multi-Level Summarization 29

CodeV-R1: Reasoning-Enhanced Verilog Generation 30

CodeV-R1: Reasoning-Enhanced Verilog Generation

CodeV-R1 Reasoning

Re-read the problem

Reflect

Reflect

31

CodeV-R1: Reasoning-Enhanced Verilog Generation

https://huggingface.co/zhuyaoyu/CodeV-R1-Qwen-7B
https://huggingface.co/collections/zhuyaoyu/codev-series-683f16115c357416e17b1bb5

32

CPU

NL HDL

CodeV

Cuda

Xpiler

BangC

HIP

DL Boost

33

？ ？ ？

34

？ ？ ？

High accuracy,
low scalability High scalability,

low accuracy

Our goal

35

Repair the incorrect low-level details
through SMT-based symbolic synthesis
with limited scale.

Index-related errors: Z3
tensor instruction-related errors：Tenspiler[1]

I d e n t i f y f a u l t y c o d e
segments using I/O pairs
a n d e x e c u t i o n t r a c e s
through unit testing.

Leveraging LLMs' code comprehension and
generation capabilities, we design general-
purpose compilation prompts to enable
automatic translation and enhance flexibility.

LLM-Based Program
Transformation

Bug
Localization

SMT-based code repairing

Source
Program

Transformed
ProgramPre-defined

Prompts

Unit
Test

Buggy code
block

Repaired
code blockSMT solver

Target
Program

Code Guessing Auto Verification Auto Repair

36
[1] Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

Transcompiler across Different Systems

Enable rapid migration between software ecosystems:
• Automatic program translation across different processors

(e.g., NVIDIA GPU, Cambricon MLU, AMD MI, Intel DLBoost)
and programming models (e.g., SIMT, SIMD).

• Real-world C/CUDA-to-BANG program translation with a
functional correctness rate exceeding 91.7%.

• Performance can reach up to 2× that of manually optimized
vendor-provided code.

• Programming efficiency can be improved by up to 96×
compared to manual development.

Experimental Results on Different Processors Performance Comparison with Different PyTorch Backend Libraries

Productivity
Improvement

37

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library Prior

Feedback

38https://qimeng-ict.github.io

Automated HDL Generation

Automated Front-End Design

Automated OS Configuration
Optimization

Automated Compiler
Tool-Chain Design

Automated Tensor Program
Transcompiler

Automated High-Performance
Library Generation

Processor

OS

Compiler

Library Prior

Feedback

39https://qimeng-ict.github.io

